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How do children allocate their attention? There is too much information in the world to encode it all, so chil-
dren must pick and choose. How do they organize their sampling to make the most of the learning opportu-
nities that surround them? Previous work shows infants actively seek intermediately predictable information.
Here we employ eye-tracking and computational modeling to examine the impact of stimulus predictability
across early childhood (ages 3–6 years, n = 72, predominantly Non-Hispanic White, middle- to upper-middle-
income), by chronological age and cognitive ability. Results indicated that children prefer attending to stimuli
of intermediate predictability, with no differences in this pattern based on age or cognitive ability. The consis-
tency may suggest a robust general information-processing mechanism that operates across the lifespan.

Infants and young children face the remarkable task
of learning about the world by extracting relevant
information from a complex environment. To do so,
attentional resources must be allocated carefully to
stimuli that provide the most useful information.
Substantial research has shown that young children
track and learn from contingencies and statistical
regularities in their environment (Fiser & Aslin,
2001, 2002a, 2002b; Saffran, Aslin, & Newport,
1996; Tarabulsy, Tessier, & Kappas, 1996). Yet, there
is still relatively little research quantifying how the
statistical properties of incoming information
impact attention.

Early work in this area proposed that infants
preferentially attend to stimuli that are moderately
discrepant from the infant’s prior knowledge (Kin-
ney & Kagan, 1976). Similarly, early theoretical
work in the area of curiosity suggested that an opti-
mal level of complexity may drive exploration (Ber-
lyne, 1960). In line with these theories, recent work
showed that in both visual and auditory domains,
8-month-old infants’ attention is best captured by
information with intermediate predictability relative
to previous observations (Kidd, Piantadosi, & Aslin,
2012, 2014). In these studies, infants viewed or lis-
tened to sequences of events, and eye-tracking was
used to measure the event at which infants termi-
nated attention to the sequence. The predictability
of events in a sequence was quantified using an
ideal learner model (see Experiment and Modeling
Approach). Results revealed a U-shaped function
relating stimulus predictability and attentional pref-
erences (termed the “Goldilocks Effect”) such that
infants were more likely to look away from stimu-
lus events that were either highly predictable or
highly unpredictable, and were more likely to
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attend to stimuli of intermediate predictability, both
at the group and individual levels (Kidd, Pianta-
dosi, & Aslin, 2012, 2014; Piantadosi, Kidd, & Aslin,
2014). These findings are in line with the long-s-
tanding theory that children construct knowledge
by seeking material that is just beyond mastery
(Piaget, 1970). No study, however, has examined
the impact of stimulus predictability on attention
post-infancy.

Extending investigation of this phenomenon into
childhood is a critical next step for understanding
whether the U-shaped pattern observed in infants
represents a robust information-processing mecha-
nism that operates beyond infancy. Early childhood
is a time of rapid learning and development across
higher-order skill domains. Higher-order cognitive
abilities, such as executive functions, emerge and
begin to differentiate (Anderson, 2002; Carlson,
2005; Zelazo et al., 2003). Specifically, between the
ages of 2 and 6 years old, children experience rapid
gains in their ability to regulate attention, including
skills such as selective attention and attention
switching (for a review, see Garon, Bryson, &
Smith, 2008). It is possible that maturation in execu-
tive functioning abilities across the early develop-
mental period relate to changes in attentional
mechanisms that support information processing
efficiency, such as the Goldilocks effect. Further-
more, in the United States, formal teaching and
learning typically begin during early childhood,
underscoring the importance of deepening our
understanding of environmental factors and cogni-
tive processes that contribute to optimal informa-
tion-seeking behavior, attention, and learning
during this developmental period. Finally, charac-
terizing the impact of predictability on attention
preferences in early childhood lays a foundation for
investigating this phenomenon in clinical popula-
tions with characteristic deficits in attention and
executive functioning, such as autism spectrum dis-
order and attention deficit/hyperactivity disorder
(Craig et al., 2016), as these developmental disor-
ders are commonly diagnosed in the early child-
hood period (Maenner et al., 2020; Visser et al.,
2014).

The present study involved exploratory analyses
quantifying the impact of predictability on visual
attention in children ages 3–6 years, and addition-
ally explored whether there is a shift in the impact
of predictability on attention preferences with mat-
uration across this age range. In addition to exam-
ining potential changes in attention allocation
strategies with age, the present study also explored
whether children’s attentional preferences shift with

increases in cognitive ability. For the purpose of the
present study, three brief measures of nonverbal
cognitive abilities were selected that were poten-
tially most relevant to implicit visual attentional
preferences and predictability, due to their reliance
on visual attention skills and lack of verbal or social
content. Specifically, measures consisted of two
tasks measuring executive functioning skills (includ-
ing selective attention/inhibitory control, and set
shifting) and one measuring visual processing
speed.

Given the rapid development of higher-order
cognitive abilities across early childhood, it would
be reasonable to expect that with increasing age
and cognitive maturity, children might show a gen-
eral shift toward preferring more complex, or less
predictable, stimuli. This pattern of results would
suggest that neural development or accumulated
experience play a role in shaping attentional prefer-
ences for predictability. However, findings of con-
sistency in the impact of predictability on attention
across the age range of children in the study (3–
6 years old), and across levels of nonverbal cogni-
tive ability, would provide support for the hypothe-
sis that the drive to prioritize attentional resources
for information at an intermediate level of pre-
dictability may represent a more automatic, low-
level phenomenon.

Experiment and Modeling Approach

Many prior attempts to examine visual attention
to stimuli varying in complexity or predictability
have lacked a quantitative definition of complexity.
The present study utilizes a formalized definition
based on previous work by Kidd et al. (2012, 2014),
in which the predictability values of sequential
events were estimated according to an ideal learner
model. This model represents a formal theory for
how a learner might track incoming statistics and
use this observed information to form probabilistic
expectations about what sort of events are likely to
occur in the future. The model thus allows us to
compute how predictable or surprising an ideal
learner would find an event to be, according to the
model’s probabilistic expectations. Events that differ
substantially from what the ideal learner model
expected are very surprising, while events that are
in line with the model’s expectations are very pre-
dictable. Previous work has employed similar prob-
abilistic models for understanding learning
(Griffiths & Tenenbaum, 2006; T�egl�as et al., 2011;
Tenenbaum, Griffiths, & Kemp, 2006). Here, we cal-
culate predictability by taking the negative log
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probability of each event according to this model.
This negative log probability value, also called “sur-
prisal,” represents the information content of each
stimulus event and quantifies the number of bits of
information required for an ideal learner to encode
the new stimulus based on previously observed
stimuli (Shannon, 1948).

To further illustrate, imagine there are four possi-
ble visual events that can be observed by an ideal
learner (see Figure 1). In this case, we assume a flat,
uninformative prior belief before observing any stim-
uli, representing the learner’s belief that each event
has an equal chance of occurring in the absence of
direct evidence at the onset (i.e., events A, B, C, and
D are equally likely). After observing each stimulus
event, the ideal learner updates their belief about the
true probability of each of the four events. After
observing the six events depicted in Figure 1, the
updated belief would be that a D event is most likely
to occur next in this sequence, C and B events have
intermediate probabilities of occurring next, and an
A event is relatively unlikely to occur next. Therefore,
if a D event is observed next, this stimulus event will
have a low surprisal value (high predictability),
whereas an A event occurring next would have a
high surprisal value (low predictability). This

example represents a unigram version of the ideal
observer model, but we can employ the same
method to investigate whether children also track
transitional statistics about incoming stimuli.

In the present experiment, eye-tracking was used
to measure at which event in the sequence children
looked away from the display. While many previ-
ous studies measure attentional preferences with
mean looking time, the present study instead mea-
sured the likelihood that children looked away at
each event to capture children’s real-time atten-
tional behavior as informational content changes as
the sequence unfolds. This allowed for characteriza-
tion of children’s attentional behavior as a function
of stimulus predictability, according to both uni-
gram and transitional versions of ideal observer
models. Previous work showed that both unigram
and transitional statics predicted infants’ attentional
preferences (Kidd, Piantadosi, & Aslin, 2012, 2014).
Therefore, both unigram and transitional models
were tested in the present study.

Method

Participants

In all, 75 children ages 3;2–6;11 years were
enrolled in the study between May 2018 and April
2019. Three participants did not yield sufficient
usable eye-tracking data (see Procedure) and were
excluded from analyses. The final sample included
72 children (49 males and 23 females), with a
roughly equal distribution of participants across the
age span (Mage = 4.8 years, SD = 1.1; see Support-
ing Information for age distribution). Children were
majority Non-Hispanic White (92%) from predomi-
nantly middle- to upper-middle-income families
(93% with annual household income over $55,000)
and were recruited from local hospitals and com-
munity events in the greater Rochester, NY area.
Participants were screened for caregiver-reported
developmental, learning, or mental health concerns,
vision and motor deficits, and neurological prob-
lems. All procedures were approved by the univer-
sity’s Institutional Review Board and informed
consent for participation was obtained from each
child’s legal guardian. Participants received finan-
cial compensation for participation. Study proce-
dures took place across two visits.

Attention Preference Eye-Tracking Task

The present study aimed to test how the pre-
dictability of visual sequences of events in the

Figure 1. Schematic of the ideal learner model. A uniform prior
is combined with observed events to form expectations about the
likelihood of upcoming events. [Color figure can be viewed at
wileyonlinelibrary.com]

Attention and Predictability in Young Children 693
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environment influences attention preferences in
young children. This task was based on similar
tasks used with infants (Kidd et al., 2012, 2014),
and was adapted for children ages 3–6 years.

Stimuli

Children were presented with visual displays
depicting sequences of events varying in pre-
dictability (Figure 2). The displays featured a large,
colored rectangle with four windows. Each window
was located in one of the four quadrants of the rect-
angle, and its position within the quadrant was ran-
domized on each sequence to one of four locations
within the quadrant. Novel objects were animated
to pop in and out of the windows, one after
another in sequence. Objects consisted of real
images of unique, unfamiliar objects that were not
easily nameable (to reduce semantic content). Each
object was unique to each window. No objects were
repeated across event sequences. The number of
possible objects (4) was chosen to be within the
range children in the study’s age range are reason-
ably able to track (Alvarez & Franconeri, 2007).
Each event in the sequence lasted 1,000 ms (500 ms
“pop-out,” 500 ms “pop-in”). Events were pre-
sented sequentially with no overlap or delay. Stim-
uli for the eye-tracking task were programmed in
Python (see Kid Experimental Library in Python;
KELPY, https://github.com/piantado/kelpy).

Procedure

This task was conducted using a table-mounted
Tobii Pro T60XL eye-tracker (Tobii Technology, Inc.,
Falls Church, VA) in a partially darkened room.
Experimenters and caregivers were directly outside
of the room while the task was completed. Children
were seated with their eyes approximately 23 in.
from the monitor. At this viewing distance, the 24-
in. LCD screen was subtended 24 9 32 degrees of
visual angle. A five-point calibration procedure was
conducted at the onset of the experiment.

Participants were presented with the same set of
32 sequences of events, each consisting of 30 possi-
ble events. The objects and sequence order were
randomized across participants. Sequences varied
in the probabilities of each of the four objects
appearing in their respective windows, ranging
from very simple (e.g., A, A, A, A, A, . . .) to more
varied (e.g., A, B, D, A, C, . . .; see Supporting
Information for details and full sequences. Full
sequences also available at https://github.com/cub

itl/attentionpredictability). Child-friendly music
with no words was played quietly in the back-
ground to maintain participants’ engagement with
the task, which was unrelated to the unfolding of
visual event on the screen and thus not expected to
systematically influence behavior event-to-event.

The primary outcome measure for each sequence
was the probability value of the specific event at
which the child looked away from the area covered
by the colored rectangle (a “look-away”). Each
sequence of events continued until either (a) the
participant met the look-away criterion (i.e., gaze
directed outside of the viewing area continuously
for > 1,000 ms) or (b) 30 s, the maximum duration
of a sequence. Before the start of each new
sequence, an attention-attracting stimulus was dis-
played on the screen until the child fixated on the
center of the screen for 1,000 ms, at which point the
next sequence was initiated. Children were
prompted to take brief breaks between sequences
as necessary to facilitate successful completion of
the task. The amount of time children spent com-
pleting this task varied based on the amount of
time they looked at the sequences as well as time
required for breaks and ranged from 12 to 34 min.
To maintain engagement, a simple cover task was
inserted randomly between sequences of the main
task. Children were only given instructions related
to the cover task, and were informed they may also
see other pictures appear on the screen that were
different from the cover task. Importantly, children
were never explicitly instructed to look at or attend
to the screen.

Sequences were discarded prior to analysis if (a)
the participant looked continuously for the full 30 s
(11.8%), as the final event of the sequence in this
case does not represent the point at which children
stopped attending, (b) the participant looked for
fewer than four events within a sequence, since so
few observations is likely insufficient to establish
expectations about the distribution of events in the
sequence (18.0%), or (c) a false look-away (the eye-
tracker temporarily stopped tracking the eyes while
the child was still looking at the screen due to child
movement), other equipment failure, or experi-
menter error (6.8%) occurred.

Participants yielded an average of 20.3 (SD = 4.5)
useable sequences out of 32 possible sequences.
Children attended to useable sequences for an aver-
age of 12.2 events (SD = 7.0) per sequence before
looking away (see Supporting Information for
details). Importantly, participants were not expected
to look for all 30 items within a sequence, as the
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key outcome of interest was the predictability of
the event at which participants looked away.

Measures of Cognitive Ability

Three cognitive measures from the NIH Toolbox
Cognition Battery (Weintraub et al., 2013) were
used to assess key areas of cognitive functioning,
including attention, inhibitory control, set shifting,
and processing speed (Anderson, 2002; Zelazo
et al., 2013). Tasks included the Flanker Inhibitory
Control and Attention Test (Flanker; selective visual
attention, inhibitory control), the Dimensional
Change Card Sort (DCCS; set shifting), and Pic-
ture Comparison Processing Speed (PCPS; process-
ing speed). These tasks have been validated in
young children in this age range, and have been
shown to be sensitive to developmental changes in
cognitive functions (Weintraub et al., 2013; Zelazo
et al., 2013). Tasks were administered via a 9.7 in.
touchscreen tablet at the second study visit.

For all three cognitive measures, analyses uti-
lized the Uncorrected Standard Score, which repre-
sents a child’s score compared to the population
mean across ages 3–85 years, facilitating compar-
ison of cognitive ability across children of different
ages. Performance data for all three measures indi-
cated substantial variability in performance within
the study sample, despite screening for develop-
mental delays (see Supporting Information for

performance data). For participants whose comple-
tion of the tasks was discontinued based on low
performance on the practice trials (Flanker, n = 7;
DCCS, n = 13), no standard scores were calculated.
These participants were not included in analyses
utilizing the tasks for which they did not receive
scores.

Analytic Approach

Modeling and data analytic methods used to
quantify predictability and examine the impact of
predictability on attention preferences are based
on methods used in previous studies of atten-
tional preference in infants (Kidd et al., 2012,
2014). The probability value of each event in a
sequence was quantified according to the ideal
learner model using a Markov Dirichlet-Multino-
mial model, a probabilistic model that uses counts
of observed events to calculate a posterior distri-
bution for an underlying multinomial distribution
of events (see Supporting Information for details).
We built both a unigram and transitional version
of the model to test both types of probabilistic
expectations.

To examine the nature of the relation between
predictability and attention preferences, the sur-
prisal value (predictability) of each event was then
compared with children’s probability of looking
away from that event to yield the linking function.

Figure 2. Example of progression of eye-tracking task. [Color figure can be viewed at wileyonlinelibrary.com]

Attention and Predictability in Young Children 695
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For visualizations of the linking function, a General-
ized Additive Model (GAM; Hastie & Tibshirani,
1990) was fit to the data to visually examine the
shape of a continuous linking function between pre-
dictability and likelihood of looking away. Separate
GAM functions were fit to the data to address each
unique question. Importantly, these modeling meth-
ods do not attempt to force the linking function to
fit a specific shape; rather, the shape of linking
function is free to vary, allowing us to detect any
potential pattern relating stimulus predictability
and children’s likelihood of looking away (e.g.,
preference for novelty, preference for familiarity,
preference for intermediate predictability, no impact
of predictability on children’s attention).

To test the significance of the impact of pre-
dictability on look-away likelihood, Cox regression
was used to account for the fact that once the child
looks away they provide no more data on that
sequence (Hosmer, Lemeshow, & May, 2008; Klein
& Moeschberger, 2005). The Cox regression controls
for the baseline distribution of look-aways in the
sample and accounts for the number of events into
the sequence that the look-away occurred (as chil-
dren are naturally more likely to look away the fur-
ther they are into the sequence). Linear and
quadratic surprisal terms were included in the
regression as predictors of look-away likelihood.
Surprisal was centered and standardized before
being squared. Model fit comparisons were con-
ducted using the Akaike information criterion (AIC;
Akaike, 1974).

Results

Unigram and Transitional Models for Full Sample

The Cox regression for the unigram model
(Table 1) yielded a significant quadratic effect
(b = .061, z = 3.729, p = .0001) indicating a signifi-
cant U-shaped association between predictability
(surprisal) and attentional preferences, where chil-
dren were most likely to continue attending to stim-
uli of intermediate predictability, and most likely to
look away from stimuli of either relatively high or
relatively low predictability (Figure 3A). The size of
this effect was exp(b) = 1.063, which means that
with each increase in squared surprisal by 1 stan-
dard deviation from the mean, the likelihood of
looking away increased by a factor of 1.063. While
this is a relatively small effect, it is highly signifi-
cant (p = .0001). The linear effect of surprisal was
also significant (b = �.071, z = �2.942, p = .003),
which indicates that the U-shaped function is not
symmetrical around the mean, shifted toward lower
surprisal values.

Results from the Cox regression for the transi-
tional model (Table 1) showed a similar overall pat-
tern as the unigram model, yielding significant
quadratic (b = .058, z = 4.428, p < .0001) and linear
(b = �.054, z = �2.238, p = .03) effects of surprisal
(Figure 3B). The size of the quadratic effect was
also relatively small (exp(b) = 1.060) but highly sig-
nificant (p < .0001). The fits of the unigram and
transitional models were compared using AIC val-
ues to understand whether either model better
explained the relation between predictability and
attention preferences. The absolute difference
between AIC values for the unigram
(AIC = 18,351.3) and transitional (AIC = 18,350.7)
models was < 2, which is considered strong evi-
dence of no difference in model fit (Burnham &
Anderson, 2004).

To examine the potential impact of other task-re-
lated factors that could influence look-away likeli-
hood, additional Cox regression analyses were
conducted with these factors as covariates. Covari-
ates were selected based on task-related factors
examined in infants (Kidd et al., 2012), and
included whether this was the first appearance of
the item in the sequence, whether this event was
the same as the previous event (repeated event),
and the sequence number (indexing how far into
the experiment the child was). Results from these
analyses indicated that even when including these
covariates, the quadratic surprisal term remained
significant for both unigram and transitional mod-
els, and there was no difference in model fit

Table 1
Cox Regression of the Effect of Predictability on Attention Preferences

Covariate
Coef
(b)

exp
(b)

SE
(b) z p

Unigram model
Linear surprisal �.071 0.931 .024 �2.942 .003**
Quadratic
surprisal

.061 1.063 .016 3.729 .0001***

Transitional model
Linear surprisal �.054 0.948 .024 �2.238 .03*
Quadratic
surprisal

.058 1.060 .013 4.428 1 9 10�5***

Note. For each regression model, linear and quadratic effects
were entered simultaneously. Surprisal was centered and stan-
dardized to have a mean of 0 and a standard deviation of 1
before being squared.
*p ≤ .05. **p ≤ .01. ***p ≤ .001.
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between unigram and transitional models (see Sup-
porting Information for details).

Taken together, these results suggest that young
children are also tracking the statistics of both sin-
gle events and pairs of events in their environment,
and that there is a U-shaped association between
predictability (surprisal) and attentional preferences

such that children are least likely to look away for
events of intermediate predictability.

Developmental Trajectory

The present study also explored potential
changes in the impact of predictability on attention

Figure 3. Look-away likelihood as a function of (A) unigram and (B) transitional surprisal (predictability). Curves represent the fit of a
Generalized Additive Model (with 95% confidence intervals) linking predictability to probability of looking away. Low values on the y-
axis indicate increased attentional preference, whereas low values on the x-axis indicate increased predictability (decreased surprisal).
Dots represent raw data binned into 5 bins (� SE) equally spaced across the x-axis. Vertical lines on the x-axis represent count of data
points collected at each predictability value. [Color figure can be viewed at wileyonlinelibrary.com]
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preferences across early childhood, which was done
by examining changes based on both chronological
age and cognitive ability level. Because analyses uti-
lize group-level data, to maximize the ability to
detect any possible differences with maturation, the
sample was divided into two groups based on
median splits for both chronological age and cogni-
tive ability analyses.

Chronological Age

The sample was divided into two equal-sized
groups based on a median split of chronological
age (Younger [3.12–4.61 years, n = 36], Older [4.62–
6.95 years, n = 36]). Younger and older children
yielded a similar average number of useable
sequences (M (SD) for Younger = 20.4 (4.6);
Older = 20.1 (4.4)). Additionally, younger and older
children attended to each useable sequence for a
similar average of number of events before looking
away (M (SD) for Younger = 11.7 (6.7);
Older = 12.7 (7.4)). Separate GAMs for each age
group were plotted to examine the association
between predictability and attention preferences for
each group according to both the unigram and
transitional models (Figure 4). Visualization of these
curves indicates overlap of 95% confidence intervals
of the two GAMs across the length of the x-axis for
both the unigram and transitional models, indicat-
ing no significant differences in the shape of the
function linking attention preferences and pre-
dictability based on age. These results suggest that
the U-shaped association between predictability
and attention preferences is relatively stable across
the age range of 3–6 years.

Cognitive Ability

In all, 69 out of the 72 children who yielded use-
able data on the eye-tracking task also completed at
least one of the selected subtests from the NIH
Toolbox Cognition Battery. Analyses utilized partic-
ipants’ Uncorrected Standardized Scores, which
represent each child’s performance compared to the
general population mean and do not correct for
age. Children were grouped into two roughly
equal-sized groups based on a median split of task
performance as measured by Uncorrected Standard
Scores (“Lower Ability” included participants
below and including the median; “Higher Ability”
included participants above the median). Groups
were created separately for each of the three mea-
sures, including Flanker (Lower Ability, n = 33;
Higher Ability, n = 31), DCCS (Lower Ability,

n = 26; Higher Ability, n = 31), and PCPS (Lower
Ability, n = 33; Higher Ability, n = 35). For each
measure, separate GAMs for Lower Ability and
Higher Ability groups were plotted to examine the
association between predictability and attention
preferences for each group according to unigram
and transitional models (Figure 5). Visualization of
these curves indicates overlap of 95% confidence
intervals of the two GAMs across the length of the
x-axis for all measures, for both the unigram and
transitional models. These findings indicate no sig-
nificant differences in the shape of the function link-
ing attention preferences and predictability based
on cognitive ability, suggesting that the U-shaped
association between predictability and attention
preferences does not change significantly with
increases in nonverbal cognitive abilities tested.

Discussion

The present study quantified the impact of pre-
dictability on visual attentional preferences in
young children, and examined the developmental
trajectory of this phenomenon across early child-
hood. Consistent with previous findings in infants,
results revealed a U-shaped association between
predictability and attention such that young chil-
dren were most likely to maintain attention to stim-
uli of intermediate complexity and were more
likely to terminate attention to highly predictable or
highly unpredictable stimuli. Results also provided
preliminary evidence that a “Goldilocks effect” may
be consistent across development in 3- to 6-year-old
children, both by chronological age and cognitive
ability. This is the first evidence that the Goldilocks
effect extends beyond infancy, suggesting that this
attentional preference may be preserved across
childhood and perhaps the lifespan.

Furthermore, this U-shaped association was sig-
nificant for both unigram and transitional models
of predictability, suggesting that children tracked
both types of statistics in a task with minimal
demands. It is likely that the optimal model of
environmental probability impacting attention allo-
cation would change based on task demands or in
contexts where prior learning indicates certain
statistics are more informative than others. Addi-
tionally, consistent with findings in infants (Kidd
et al., 2012, 2014), the size of this effect for both
models was small, though highly significant. This is
expected, as many other stimulus factors also
impact visual attention (e.g., salience, movement;
Itti & Koch, 2001). The predictability of visual
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stimuli may also have greater influence on attention
preferences in a task where tracking statistical prop-
erties of events improves performance.

Taken together, these findings contribute to our
understanding of how statistical properties of infor-
mation in the environment influence attentional
patterns and subsequent learning across develop-
ment. Young children are tracking probabilistic

visual information in their environment and prefer-
entially attending to intermediately predictable
information. This implicit attentional strategy may
serve as a domain-general mechanism prioritizing
information that is optimal for learning, thereby
maximizing cognitive efficiency in the complex nat-
ural environment. Given the sociocultural homo-
geneity of the present study sample, it will be

Figure 4. Look-away likelihood as a function of (A) unigram and (B) transitional surprisal (predictability) for younger and older groups.
The curves represent the fit of separate Generalized Additive Models for each age group (with 95% confidence intervals), linking pre-
dictability to probability of looking away separately for each group. Dots represent raw data binned into 5 bins (� SE) equally spaced
along the x-axis. Vertical lines on the x-axis represent count of data points collected at each predictability value. [Color figure can be
viewed at wileyonlinelibrary.com]
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critical for future work to examine this phe-
nomenon in more diverse populations to better
understand the generalizability of these findings.
Another limitation of this work is that age and cog-
nitive ability differences were examined cross-sec-
tionally. Furthermore, median splits on age and
cognitive ability were used in the present study

due to the paradigm and group-level analyses con-
ducted, as they maximized our ability to observe
any possible shift in attentional behavior with mat-
uration. It may be valuable for future studies to
explore potential subtle developmental changes in
this attentional mechanism by estimating individual
linking functions, as has been done in infants

Figure 5. Look-away likelihood as a function of (A, C, E) unigram and (B, D, F) transitional surprisal (predictability) for Lower Ability
and Higher Ability groups for NIH Toolbox tasks. Measures included Flanker Inhibitory Control and Attention Test (Flanker), Dimen-
sional Change Card Sort (DCCS), and Picture Comparison Processing Speed (PCPS). Curves represent the fit of separate Generalized
Additive Models (with 95% confidence intervals) linking predictability to probability of looking away separately for each group. Dots
represent raw data binned into 5 bins (� SE) equally spaced along the x-axis. Vertical lines on the x-axis represent count of data points
collected at each predictability value. [Color figure can be viewed at wileyonlinelibrary.com]
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(Piantadosi et al., 2014). To draw meaningful con-
clusions from this sort of analysis would require
collecting significantly more data from each indi-
vidual, perhaps even using a variety of tasks or
stimuli. However, to fully characterize the impact
of predictability on attention across the lifespan, it
will be important to extend this work to a broader
age range and to examine individual developmental
trajectories of this phenomenon.

Our findings have important implications for
ongoing work in curiosity and learning, and the
interaction of these processes across development.
The present study demonstrated that in the absence
of an explicit goal, young children across a range of
ages beyond infancy and across cognitive ability
levels track the statistical properties of incoming
information, and modulate their attention to priori-
tize information that is intermediately predictable
based on their prior observations. These results are
consistent with long-standing theories in explo-
ration and curiosity suggesting that learners select
material that is neither too simple nor too complex,
and therefore potentially optimal for learning (Ber-
lyne, 1960). Our results demonstrate that across
early childhood, an attentional preference for inter-
mediate predictability is an organizing principle
that guides what information children sample in
their environment, contributing to our understand-
ing of curiosity-driven learning processes (Kidd &
Hayden, 2015; Oudeyer & Smith, 2016). Because the
present paradigm did not directly measure learn-
ing, it will be important for future work to examine
the impact of this attentional mechanism on down-
stream learning. Open questions remain as to
whether learners vary in the extent to which pre-
dictability of incoming information impacts their
learning, and which aspects of learning are facili-
tated by this phenomenon.

Findings from the present study also suggest
next steps in efforts to identify neural systems
involved in attention, curiosity, and learning. Con-
sistency in the attentional preference for intermedi-
ate predictability across development suggests that
this phenomenon may be related to basic neural
processes, such as mechanisms striving to maintain
optimal arousal of the neural system (Aston-Jones
& Cohen, 2005; Cools & D’Esposito, 2011; McGin-
ley, David, & McCormick, 2015; Yerkes & Dodson,
1908). Future work examining possible neural
underpinnings of this attentional preference could
aid in linking the role of this attentional preference
to other aspects of cognition (Turk-Browne, Scholl,
& Chun, 2008).

Finally, predictability of visual events in a
sequence is just one of many aspects of stimulus
complexity, and this phenomenon has only been
examined in highly controlled, laboratory-based
experimental tasks. Additional work is necessary to
gain a more sophisticated understanding of the
combined impact of various types of complexity on
how children allocate attention in the natural envi-
ronment. It will also be important to explore other
environmental factors that may impact the optimal
level of predictability for capturing attention (e.g.,
distracting environments, social interactions). Con-
tinued work in this area will deepen our under-
standing of typical cognitive development, and
provide a foundation for exploring potential devia-
tions from this process in developmental disorders
(e.g., autism spectrum disorder, attention deficit/
hyperactivity disorder).

References

Akaike, H. (1974). A new look at the statistical model iden-
tification. IEEE Transactions on Automatic Control, 19,
716–723. https://doi.org/10.1007/978-1-4612-1694-0_16

Alvarez, G. A., & Franconeri, S. L. (2007). How many
objects can you track?: Evidence for a resource-limited
attentive tracking mechanism. Journal of Vision, 7, 14.
https://doi.org/10.1167/7.13.14

Anderson, P. (2002). Assessment and development of
executive function (EF) during childhood. Child Neu-
ropsychology, 8, 71–82. https://doi.org/10.1076/chin.8.2.
71.8724

Aston-Jones, G., & Cohen, J. D. (2005). An integrative the-
ory of locus coeruleus-norepinephrine function: Adap-
tive gain and optimal performance. Annual Review of
Neuroscience, 28, 403–450. https://doi.org/10.1146/
annurev.neuro.28.061604.135709

Berlyne, D. E. (1960). Conflict, arousal, and curiosity. New
York, NY: McGraw-Hill Book.

Burnham, K. P., & Anderson, D. R. (2004). Multimodel
inference: understanding AIC and BIC in model selec-
tion. Sociological Methods & Research, 33, 261–304.
https://doi.org/10.1177/0049124104268644

Carlson, S. M. (2005). Developmentally sensitive measures
of executive function in preschool children. Developmen-
tal Neuropsychology, 28, 595–616. https://doi.org/10.
1207/s15326942dn2802_3

Cools, R., & D’Esposito, M. (2011). Inverted-U–shaped
dopamine actions on human working memory and
cognitive control. Biological Psychiatry, 69, e113–e125.
https://doi.org/10.1016/j.biopsych.2011.03.028

Craig, F., Margari, F., Legrottaglie, A. R., Palumbi, R., De
Giambattista, C., & Margari, L. (2016). A review of exec-
utive function deficits in autism spectrum disorder and
attention-deficit/hyperactivity disorder. Neuropsychiatric

Attention and Predictability in Young Children 701

 14678624, 2021, 2, D
ow

nloaded from
 https://srcd.onlinelibrary.w

iley.com
/doi/10.1111/cdev.13536 by D

et K
ongelige, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/978-1-4612-1694-0_16
https://doi.org/10.1167/7.13.14
https://doi.org/10.1076/chin.8.2.71.8724
https://doi.org/10.1076/chin.8.2.71.8724
https://doi.org/10.1146/annurev.neuro.28.061604.135709
https://doi.org/10.1146/annurev.neuro.28.061604.135709
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1207/s15326942dn2802_3
https://doi.org/10.1207/s15326942dn2802_3
https://doi.org/10.1016/j.biopsych.2011.03.028


Disease and Treatment, 12, 1191. https://doi.org/10.2147/
NDT.S104620

Fiser, J., & Aslin, R. N. (2001). Unsupervised statistical
learning of higher-order spatial structures from visual
scenes. Psychological Science, 12, 499–504. https://doi.
org/10.1111/1467-9280.00392

Fiser, J., & Aslin, R. N. (2002a). Statistical learning of
higher-order temporal structure from visual shape
sequences. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 28, 458–467. https://doi.org/10.
1037/0278-7393.28.3.458

Fiser, J., & Aslin, R. N. (2002b). Statistical learning of new
visual feature combinations by infants. Proceedings of
the National Academy of Sciences of the United States of
America, 99, 15822–15826. https://doi.org/10.1073/pna
s.232472899

Garon, N., Bryson, S. E., & Smith, I. M. (2008). Executive
function in preschoolers: A review using an integrative
framework. Psychological Bulletin, 134, 31. https://doi.
org/10.1037/0033-2909.134.1.31

Griffiths, T. L., & Tenenbaum, J. B. (2006). Optimal predic-
tions in everyday cognition. Psychological Science, 17, 767–
773. https://doi.org/10.1111/j.1467-9280.2006.01780.x

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive
models. Boca Raton, FL: Chapman and Hall/CRC Press.

Hosmer, D., Lemeshow, S., & May, S. (2008). Applied sur-
vival analysis: Regression modeling of time to event data
(2nd ed.). Hoboken, NJ: Wiley.

Itti, L., & Koch, C. (2001). Computational modelling of
visual attention. Nature Reviews Neuroscience, 2, 194.
https://doi.org/10.1038/35058500

Kidd, C., & Hayden, B. Y. (2015). The psychology and
neuroscience of curiosity. Neuron, 88, 449–460. https://
doi.org/10.1016/j.neuron.2015.09.010

Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2012). The
Goldilocks effect: Human infants allocate attention to
visual sequences that are neither too simple nor too
complex. PLoS One, 7, e36399. https://doi.org/10.
1371/journal.pone.0036399

Kidd, C., Piantadosi, S. T., & Aslin, R. N. (2014). The
Goldilocks effect in infant auditory attention. Child
Development, 85, 1795–1804. https://doi.org/10.1111/
cdev.12263

Kinney, D. K., & Kagan, J. (1976). Infant attention to audi-
tory discrepancy. Child Development, 47, 155–164.
https://doi.org/10.2307/1128294

Klein, J. P., & Moeschberger, M. L. (2005). Survival analy-
sis: techniques for censored and truncated data (2nd ed.).
New York, NY: Springer-Verlag.

Maenner, M. J., Shaw, K. A., Baio, J., Washington, A.,
Patrick, M., DiRienzo, M., . . . Dietz, P. M. (2020).
Prevalence of autism spectrum disorder among chil-
dren aged 8 years—autism and developmental disabili-
ties monitoring network, 11 sites, United States, 2016.
MMWR Surveillance Summaries, 69, 1. https://doi.org/
10.15585/mmwr.ss6904a1

McGinley, M. J., David, S. V., & McCormick, D. A.
(2015). Cortical membrane potential signature of

optimal states for sensory signal detection. Neuron, 87,
179–192. https://doi.org/10.1016/j.neuron.2015.05.038

Oudeyer, P.-Y., & Smith, L. B. (2016). How evolution may
work through curiosity-driven developmental process.
Topics in Cognitive Science, 8, 492–502. https://doi.org/
10.1111/tops.12196

Piaget, J. (1970). Structuralism. New York, NY: Harper &
Row.

Piantadosi, S. T., Kidd, C., & Aslin, R. (2014). Rich analy-
sis and rational models: Inferring individual behavior
from infant looking data. Developmental Science, 17,
321–337. https://doi.org/10.1111/desc.12083

Saffran, J. R., Aslin, R., & Newport, E. (1996). Statistical
learning by 8-month-old infants. Science, 274, 1926–
1928. https://doi.org/10.1126/science.274.5294.1926

Shannon, C. (1948). A mathematical theory of communi-
cation. Bell Systems Technical Journal, 27, 379–423.
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Tarabulsy, G. M., Tessier, R., & Kappas, A. (1996).
Contingency detection and the contingent organization
of behavior in interactions: Implications for socioemo-
tional development in infancy. Psychological Bulletin,
120, 25–41. https://doi.org/10.1037/0033-2909.120.1.25

T�egl�as, E., Vul, E., Girotto, V., Gonzalez, M., Tenenbaum,
J. B., & Bonatti, L. L. (2011). Pure reasoning in 12-
month-old infants as probabilistic inference. Science, 332,
1054–1059. https://doi.org/10.1126/science.1196404

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006). The-
ory-based Bayesian models of inductive learning and
reasoning. Trends in Cognitive Sciences, 10, 309–318.
https://doi.org/10.1016/j.tics.2006.05.009

Turk-Browne, N. B., Scholl, B. J., & Chun, M. M. (2008).
Babies and brains: Habituation in infant cognition and
functional neuroimaging. Frontiers in Human Neuro-
science, 2, 16. https://doi.org/10.3389/neuro.09.016.
2008

Visser, S. N., Danielson, M. L., Bitsko, R. H., Holbrook, J.
R., Kogan, M. D., Ghandour, R. M., . . . Blumberg, S. J.
(2014). Trends in the parent-report of health care provi-
der-diagnosed and medicated attention-deficit/hyperac-
tivity disorder: United States, 2003–2011. Journal of the
American Academy of Child and Adolescent Psychiatry, 53,
34–46. https://doi.org/10.1016/j.jaac.2013.09.001

Weintraub, S., Dikmen, S. S., Heaton, R. K., Tulsky, D. S.,
Zelazo, P. D., Bauer, P. J., . . . Gershon, R. C. (2013).
Cognition assessment using the NIH Toolbox. Neurol-
ogy, 80, S54–S64. https://doi.org/10.1212/WNL.0b013e
3182872ded

Yerkes, R. M., & Dodson, J. D. (1908). The relation of
strength of stimulus to rapidity of habit-formation. Jour-
nal of Comparative Neurology and Psychology, 18, 459–482.
https://doi.org/10.1002/cne.920180503

Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen,
K., Beaumont, J. L., & Weintraub, S. (2013). II. NIH
Toolbox Cognition Battery (CB): Measuring executive
function and attention. Monographs of the Society for
Research in Child Development, 78, 16–33. https://doi.
org/10.1111/mono.12032

702 Cubit, Canale, Handsman, Kidd, and Bennetto

 14678624, 2021, 2, D
ow

nloaded from
 https://srcd.onlinelibrary.w

iley.com
/doi/10.1111/cdev.13536 by D

et K
ongelige, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.2147/NDT.S104620
https://doi.org/10.2147/NDT.S104620
https://doi.org/10.1111/1467-9280.00392
https://doi.org/10.1111/1467-9280.00392
https://doi.org/10.1037/0278-7393.28.3.458
https://doi.org/10.1037/0278-7393.28.3.458
https://doi.org/10.1073/pnas.232472899
https://doi.org/10.1073/pnas.232472899
https://doi.org/10.1037/0033-2909.134.1.31
https://doi.org/10.1037/0033-2909.134.1.31
https://doi.org/10.1111/j.1467-9280.2006.01780.x
https://doi.org/10.1038/35058500
https://doi.org/10.1016/j.neuron.2015.09.010
https://doi.org/10.1016/j.neuron.2015.09.010
https://doi.org/10.1371/journal.pone.0036399
https://doi.org/10.1371/journal.pone.0036399
https://doi.org/10.1111/cdev.12263
https://doi.org/10.1111/cdev.12263
https://doi.org/10.2307/1128294
https://doi.org/10.15585/mmwr.ss6904a1
https://doi.org/10.15585/mmwr.ss6904a1
https://doi.org/10.1016/j.neuron.2015.05.038
https://doi.org/10.1111/tops.12196
https://doi.org/10.1111/tops.12196
https://doi.org/10.1111/desc.12083
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1037/0033-2909.120.1.25
https://doi.org/10.1126/science.1196404
https://doi.org/10.1016/j.tics.2006.05.009
https://doi.org/10.3389/neuro.09.016.2008
https://doi.org/10.3389/neuro.09.016.2008
https://doi.org/10.1016/j.jaac.2013.09.001
https://doi.org/10.1212/WNL.0b013e3182872ded
https://doi.org/10.1212/WNL.0b013e3182872ded
https://doi.org/10.1002/cne.920180503
https://doi.org/10.1111/mono.12032
https://doi.org/10.1111/mono.12032


Zelazo, P. D., M€uller, U., Frye, D., Marcovitch, S., Argitis,
G., Boseovski, J., . . . Sutherland, A. (2003). The devel-
opment of executive function in early childhood. Mono-
graphs of the Society for Research in Child Development,
68, https://doi.org/10.1111/j.0037-976X.2003.00261.x

Supporting Information

Additional supporting information may be found in
the online version of this article at the publisher’s
website:

Appendix S1. Supporting information includes
additional details regarding 1) participant age dis-
tribution, 2) sequences used in the experiment, 3)
number of events seen by participants in each
sequence, 4) participants’ performance on cognitive
measures, 5) the analytic approach, and 6) addi-
tional analyses that include task-related covariates.
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