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Efficient algorithms can enhance problem-solving in many cognitive
domains but can be difficult to discover and use. For example, classical
studies of seriation suggest that children struggle to apply algorithmic

strategiesin asimple sorting problem. We investigated the spontaneous
discovery of algorithmic solutions across development. We gave children
avariant of the sorting problem with hidden object ranks: children sort
animated bunnies into the right order, from the shortest to the tallest,
when the bunnies are standing behind a wall so their heights are not
visible. Children performed far above chance on this difficult sorting task,
potentially because higher demands in memory and reasoning incentivized
strategic behaviours. Children also independently discovered at least

two efficient algorithmic solutions to the sorting problem: selection sort
and shaker sort. Additionally, our developmental results show that older
children were more effective sorters than younger children and used
efficient sorting algorithms more frequently. These results indicate that
children are far more competent at applying algorithmic solutions to
sorting tasks than previous research would suggest, and performance on
sorting tasks improves throughout development. Our work demonstrates
that children have the ability to spontaneously organize their behaviours
and find effective solutions to challenges in the world.

Imagine that you are baking a dozen cookies. One approach is to mix
theingredients and bake each individual cookie 12 times. A more effi-
cient approach is to execute the mixing and baking processes only
once for the entire batch. Bothmethods produce identical results, but
the latter represents a more efficient strategy. Strategies are special
cases of procedural knowledge that can take the forms of algorithms,
which are step-by-step, formulaic techniques that, when followed
properly, yield the correct solutions to problems’* The acquisition
and use of cognitive algorithms are important because structured
forms of problem-solving can enhance performance at many tasks®>.
Some example domains in which people oftenrely on algorithmically
structured knowledge include memory strategies®’, mathematical
cognition'*"and grammatical rules'>".

The use of strategies to accomplish cognitive tasks is affected by
many domain-general cognitive abilities, such as working memory

capacity, inhibition control, cognitive flexibility and processing speed™ .
Onthe one hand, previous research has shown that children start to be
strategic even when they are very young™*, and they become increas-
ingly capable of using more efficient strategies as they age®"*'. Research
has also shown that children are very competent in choosing adap-
tively among various algorithms, depending on specific constraints or
demands of the tasks?***.0n the other hand, young children have been
shown to struggle to apply systematic strategies because they have
underdeveloped domain-general cognitive abilities” 2. In this paper,
we provide evidence that shows children’s spontaneous discovery of
efficient sorting strategies, countering all conventional expectations,
accordingto the current developmental psychology literature. Our work
demonstrates that children can spontaneously organize their behaviour
inamore systematic manner than previous research suggests, and that
they dosotodevelop efficient solutions to the challenges they encounter.
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The goal of this paper is to investigate the spontaneous discovery
of structured algorithmic strategies by children. In particular, we exam-
ined the algorithmic structure in children’s behaviours when solving
adifficult sorting task. Sorting is considered a fundamental problem
in computer science. It is arich and interesting problem because it
requires the use of strategies for executing an appropriate sequence
of actions to achieve the correct final ordering of objects”. Sorting
is the basic building block of many mathematical and programming
problems. Its solutions have therefore been studied extensively, and
various algorithms with different spatial and temporal efficiency can
be used to solve a sorting task”. For instance, the well-known bubble
sort algorithm sorts effectively by repeatedly iterating through a list,
comparing adjacent elements, and swapping them if they are in the
wrong order, causing larger elements to ‘bubble up’ to the top of the
list until the entire listis sorted.

Our sorting task tests a skill that Jean Piaget called seriation. The
Piagetian version of the task studies the behaviours of children by ask-
ingthemto arrange a disordered set of sticks of different lengths into
the correctorder®®*. Since then, similar tasks have been used with chil-
drento show developmental changes in seriation abilities® *. Children
are thought to progress through predictable developmental stages
before they can consistently use efficient sorting strategies. Classic
work suggests that children under age seven generally struggle with
applyingstructured and efficient strategies: young childrentend torely
onunsystematic trial-and-error approaches®®. Around age seven, they
begin to use efficient strategies more consistently and effectively®**".
These findings contributed to the widely held assumption that effi-
cient, algorithm-like strategies are largely beyond the grasp of young
children. Seriationis animportantskill for children to master because
itis crucial for the development of early math skills®. For instance, it s
theorized to be the foundation of the comprehension of relationships
between numbers® and is predictive of the comprehension of the num-
ber line®. Learning accurate and efficient algorithms to perform the
seriation task is therefore closely linked to the development of more
general numerical abilities and mathematics cognition.

Our experiment used a sorting problem with hidden object ranks
(Fig. 1). In this case, children were told to rank objects according to
their heights, but they could not see the heights of those objects.
To make the task engaging and enjoyable, we designed it to be both
interactive and fun. Children, ages four to ten, were asked to sort six
bunnies from the shortest to the tallest on a touch-screen computer
(see Table 1 for the age group breakdown). For each participant and
eachtrial, theinitial order of the bunnies was randomly generated (see
‘Difficulty’ in the Supplementary Information for detailed analyses
of the out-of-orderness in the initial arrangements). Children were
familiarized with the sorting task by performing three practice trials
in which the heights of the bunnies were visible, partially visible and
not visible (Fig. 1a). For all six test trials, the heights of the bunnies
were not visible (Fig. 1a). In each trial, children performed a series of
pairwise comparisons by selecting two bunnies for every comparison
until they thought they had achieved the correct final ordering of the
bunnies. Only pairs that were out of order would actually switch posi-
tions, resultinginaswap (Fig. 1c). If the selected pair was already at the
correctrelative order, then they would not switch positions, resulting
inanon-swap (Fig.1b). At theend of each trial, children were given feed-
backregardingtheir accuracy and efficiency before they moved onto
the next trial (see ‘Experiment design’ and ‘Procedure’in the Methods
aswellas ‘Experiment’in the Supplementary Information for details).

We thenanalysed the algorithmic structure of children’s behaviour
by identifying key patterns in their behaviour that are foundations of
efficient sorting algorithms. Our results show that children achieved
high accuracies on these sorting tasks, and they also spontaneously
discovered and used atleast two efficient sorting algorithms, selection
sort and shaker sort (these two sorting algorithms are illustrated in
Fig.2).Our research provides new evidence of children’s spontaneous

discovery of strategies. Importantly, our analysis highlights that stra-
tegic behaviour can be observed even when children’s final answers
are incorrect, which suggests that process-based analyses can reveal
children’s algorithmic thinking that might otherwise go unnoticed.

Results
Children are able to sort objects, even when the ordering of the
objectsis hidden
Ourresultsshowthatall children (123 out of 123) were able to sort the bun-
niesinthe practicetrialsin which they were visible (practice trials1and 2).
This indicates that children as young as four years old have the ability
to sort. Our results extend prior findings showing that young children
cansuccessfully sort smallarraysinwhichitems ofthe arraysare visible,
demonstrating an understanding of relative size when direct comparison
is possible®>*°. In all test trials, we tested children’s sorting abilitiesina
more demanding context, where the items are not visible and their rela-
tive ranks must be inferred from the outcomes of pairwise comparisons.
Figure 3a shows the distribution of participants’ accuracy, sepa-
rated by age group. Inthis figure, percentage accuracy is defined as the
proportion of testing trials included in the analysis that resulted in the
correct final ordering. We excluded atrial if it contained fewer than five
comparisons or more than three standard deviations from the mean
number of comparisons (46). As aresult, 667 trials (90.38%) were kept
for all following analyses (see ‘Exclusion criteria’ in the Methods for
details). A substantial portion of children performed the sorting task
correctly even when the heights of the bunnies were not visible: children
showed an average 38.68% accuracy in all testing trials, notably higher
thanchanceaccuracy (19.93%; see ‘Chance accuracy’inthe Methods for
details). It also shows that older children are more clustered towards
higheraccuracies. Children’saccuracy results areinteresting in light of
children’sreported failures in applying structured and efficient strate-
gies in previous similar and simpler seriation tasks®***. This difference
may suggest that the higher memory and reasoning demands of our sort-
ing tasks motivated childrento find more efficient algorithmic solutions.

Older children are more accurate sorters

Older children performed better on our sorting task: their accuracy
across six test trials is higher than that of younger children. Figure 3b
shows children’s percentage accuracy as afunction of age. The percent-
age of trials that older children performed correctly is significantly
greater thanthat of younger children (8= 0.35; P< 0.001; z = 4.61;95%
confidence interval (CI), (0.20, 0.50)).

Figure 3cshowstest trial accuracies averaged across participants
and separated by age groups. It shows that participants’ average sort-
ingaccuracies do not fluctuate throughout the experiment. Younger
children’s accuracies appear to decrease with practice, potentially
duetoadecreasein attention and interest over time. Older children’s
accuracies appear to increase with practice, suggesting that their
performance on later trials may benefit from their experiences with
previoustrialsinthe experiment. The positive practice effectin older
children is shown by the positive interaction between age and trial
number (f=0.19; P=0.023;2=2.27;95%Cl, (0.03, 0.36); see ‘Accuracy’
inthe Supplementary Information for more information).

It is also worth noting that older children were not using
more comparisons than younger children on correctly performed
test trials (8=0.39; P=0.285; t,;,=1.07; 95% CI, (-0.32,1.09); Bayes
factor (BF,,), 0.24). One possible explanation is that older children’s
sorting behaviours might be more efficient than those of younger
children, and this allows them to have a higher accuracy while not
using more comparisons.

Older children’s sorting behaviour shifts from spatial
proximity to temporal proximity

To facilitate a greater understanding of the developmental results,
we analysed the behavioural structure of participants’ responses.
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Practice trial. 1

Practice trial 3

Fig.1|Study design and procedure. a, lllustration of the study procedure,
including practice trials and test trials. During each trial, the participants sorted
six bunniesin the correct order. In practice trial 1, the heights were fully visible;

[N
i

Non-swap

in practice trial 2, the heights were partially visible; and in practice trial 3and
the test trials, the heights were not visible. b, An example of acomparison that
resulted inanon-swap. ¢, An example of acomparison that resulted in a swap.

Table 1| Age groups and the number of participants in each
age group

Age group Number of participants
4 16
B 18
6 21
7 22
8 21
9 25

Welooked at two types of comparisons participants can perform: adja-
centcomparisons and consecutive comparisons. An adjacent compari-
sonisaselectioninwhich the twobunnies chosen occupy neighbouring
positions. A consecutive comparisonis aselectionin which one of the
positions matches a position chosenin the previous comparison. Note
thatadjacent and consecutive comparisons are not mutually exclusive;
asingle comparison may qualify as both, either or neither. Both types of
comparisons are essential building blocks of many identifiable sorting
algorithms. For instance, if a participant is using shaker sort (details
below), then they will frequently use adjacent comparisons, and if a
participantis using selectionsort, they will frequently use consecutive
comparisons and adjacent comparisons.

These two types of comparisons, however, differ in their demands
on participants’ cognitive abilities. To perform adjacent compari-
sons, participants do not need to remember which positions they
selectedinthe previous comparison. However, to perform consecutive

comparisons, participants have to remember at least one selected
position from the previous comparison to select the same position
again. Consecutive comparisons therefore have a higher demand for
participants’ abilities to memorize and track what they have selected or
to use astrategy thatencodes this regularity. Consecutive comparisons
are also more demanding because they require participantsto click on
twobunnies that are not necessarily close to each other. Furthermore,
consecutive comparisons demand a higher level of conceptual under-
standing of object relations in the sense that for participants to select
two bunnies that are not adjacent, they would have to understand that
two objectsthatare not placedimmediately next to each other may also
berelated and have properties that can be compared.

We performed a generalized linear regression analysis using a
binomial link function with random participant effects to assess the
effect of age onthe types of comparisons participants used. The results
show that while age does not have a significant effect on the percent-
age of adjacent comparisons participants used (8 =-0.04; P=0.457;
z=-0.74;95%Cl, (-0.14,0.06); Fig. 4a), older children were more likely
to perform consecutive comparisons (8 =0.22; P < 0.001;2=5.15;95%
Cl,(0.14,0.30); Fig. 4b; see ‘Comparison analysis’in the Supplementary
Information for more information). Our results provide supporting evi-
dence for the theory that consecutive comparisons requireincreased
cognitive resources.

We also performed an additional set of generalized linear regres-
sionanalyses using abinomial link function with random participant
effects to assess whether being further into the experiment or a trial
influenced the types of comparisons participants used. The results
show that children were less likely to perform adjacent comparisons
when they were further into a trial (8=-0.12; P<0.001; z=-5.194;
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Fig. 2| Illustrations of two different sorting algorithms: selection sort and
shaker sort. a, An example of using the selection sort algorithm to solve the
sorting task. b, An example of using the shaker sort algorithm to solve the sorting
task. The first row indicates the initial order of the bunnies, and the last row
indicates the order of the bunnies when the trial is finished. Every row in between
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indicates acomparison, with two shaded positions being the two bunnies
selected by the participant in the comparison. Squares that are darkly shaded

are comparisons that resulted in aswap. Squares that are lightly shaded are
comparisons that resulted inanon-swap.

95%Cl, (-0.16,-0.074); Fig. 4c). In contrast, children were more likely
to perform consecutive comparisons when they were further into
atrial (8=0.31; P<0.001; z=12.348; 95% ClI, (0.26, 0.35); Fig. 4d).
Our results show that the more experience and practice children
had, the more likely they were to realize the flexibility and utility of
consecutive comparisons and start incorporating them into their
sorting strategies. As aresult, children who heavily relied on adjacent

comparisons gradually transitioned to increase their use of consecu-

than precisely following a specific algorithm, in contrast to adults (see
‘Exploratory behavior’ in the Supplementary Information for some
examples). Itis therefore challenging to align their full sequences of
comparisons with aspecificalgorithm without substantial errorsin clas-
sification. Even when children are using algorithms in problem-solving,
they also frequently deviate from the algorithms that they are using,
producing incomplete implementations of strategies. We identified
key signature patterns for the two sorting algorithms that children

tive comparisons, which may contribute to theincreasein efficiency  discovered to overcome this difficulty in data analysis. We classified a
that we see in Fig. 3b.

Together, theseresults point to behavioural differences between
more efficient sorters and less efficient sorters. They also offer a pos-
sible explanation as to why older children were more efficient,and why
children’s efficiency increased during the experiment.

Children discover and use various sorting algorithms

We analysed the algorithmic structure of the strategies children used
to understand these behavioural differences in more detail. We per-
formed a pattern-matching analysis on the sequences of comparisons
that they performed in each trial to identify specific algorithms. As
Thompson et al.* demonstrated, participants who use different algo-
rithms exhibit different identifiable signature behavioural patterns.
Childrenappeared to engage more frequently with exploratory behav-
iours, patterns of comparisons that do not align with any identifiable
sorting algorithm but still reflect engagement with the task, rather

participantasusinga particular algorithmifthe participant produceda

sequence of comparisons that contains the signature pattern anywhere
throughout the trial.

The two most common algorithms were selection sort (also the

mostcommon algorithmused by adults) and shaker sort (lesscommon
amongadults, but attested). Figure 5 shows the signature sequences of
comparisons generated by using these two algorithms. Selection sort
generates afixed sequence of 15 comparisons that are guaranteed to
establish the correct order. It canalso be separated into forward selec-
tionsortand backward selection sort, depending on whether the par-
ticipant starts fromthe left or the right. The left panel of Fig. 5a shows
anexample of the sequence of comparisons that would be generated
ifaparticipant were using the selection sort algorithm. In this figure,
the top row represents the initial ordering of the bunnies, such that
O represents the shortest bunny and 5 represents the tallest bunny.
The bottom row represents the final ordering. Every row represents
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Fig. 3| Results. a, Distribution of participants’accuracy by age group. The
stacked bar chart shows the number of participants across different accuracy
ranges (0-100%) for each age group, with younger participants generally having
lower accuracies and older participants having higher accuracies. b, Percentage
accuracy as afunction of age (red solid line), with each dot representing an
individual participant’s performance. The lineis the linear regression fit with a
95% Cl. Asignificant portion of the red line is above the chance level
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(black dashed line), indicating that children’s performances are significantly
better than chance. The positive slope of our fit line also shows that older
children have higher accuracy. ¢, Accuracy across test trials for all age groups.
The top panel shows the average accuracy trend for all participants, while the
lower panels break it down by individual age groups. Each plot shows fluctuations
inaccuracy over six test trials, with only older children showing practice effects.
Theerror bars represent ones.e.m.

a comparison, with two selected positions shaded. Darker positions
indicate a swap, and lightly shaded positions indicate a non-swap.
The numbersinevery row represent the ordering of the bunnies after
each comparison. The middle panel of Fig. 5a shows behavioural
patterns generated by a participant when they faced a trial with the
same initial orderings as shown in the left panel. Consistent with our
expectation, children’sactual behaviour shows redundant comparison
attempts and deviations from the most efficient implementation of
the algorithm, but nonetheless clear signs of algorithmic structure.
The pattern we used to identify the use of selection sort is shown in
theright panel of Fig. 5a.

Shakersortis achieved by selecting two adjacentbunniesatatime
and movingtheselection from left to right, and then fromright toleft,
until the participant arrives at the correct ordering (imagine shaking
ahorizontal bottle, side to side). It can also be separated into forward
shaker sort and backward shaker sort, depending on which side the
participantstarted at. Shaker sort also guarantees accuracy if applied
for enough iterations (shakes). However, the number of iterations
required does depend on the specific initial ordering of the bunnies.

Figure 5b shows an example of using the shaker sort algorithm with
maximum efficiency, as well as behavioural results from a participant
using this algorithm. The pattern we used to identify the use of shaker
sortisshownin the right panel of Fig. 5b.

Our pattern-matching analysis shows that for anotable percentage
of trials (34.48%, 230 out of 667 trials; Fig. 6), participants performed
a sequence of comparisons that were consistent with them using at
least one identifiable sorting algorithm. There are 110 trials in which
participants’ behaviour aligns with the pattern of using selection sort
(chance level, 0.003%; examples shown in Fig. 6; see Supplementary
Information), 141 trials in which participants’ behaviour aligns with
the pattern of using shaker sort (chance level, 0.13%; examples shown
in Fig. 6; see Supplementary Information) and 21 trials in which par-
ticipants’ behaviour aligns with the pattern of using both algorithms
(Table 2 shows the number of trials and participants ineach algorithm
category). On the participant level, our pattern-matching analysis
shows that 67 participants used at least one identifiable algorithm
(54.47%).Figure 6 also indicates that older children used these two iden-
tified algorithms more frequently (selection sort: = 0.45; P< 0.001;
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Fig. 4| Children’s use of adjacent and consecutive comparisons during
sorting. a, An example of an adjacent comparison. An adjacent comparison s
aselectionin which the two bunnies chosen occupy neighbouring positions.
b, Anexample of a consecutive comparison. A consecutive comparisonisa
selection in which one of the positions matches a position chosen in the previous
comparison. ¢, Proportion of comparisons that are adjacent comparisons asa
function of age. Theline is the linear regression fit with a 95% CI. The flat trend
indicates that older and younger children used similar proportions of adjacent
comparisons. d, Proportion of comparisons that are consecutive comparisons
asafunction of age. Thelineis the linear regression fit with a 95% CI. The positive

b Consecutive comparisons
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trend demonstrates that older children used a greater proportion of consecutive
comparisons. e, Proportion of comparisons that are adjacent comparisons as a
function of comparison number. The lineis the linear regression fit with a 95%
Cl. The size of each dot represents the number of data points. The negative trend
demonstrates that the deeper participants get into a trial, the less likely they are
to use adjacent comparisons. f, Proportion of comparisons that are consecutive
comparisons as a function of comparison number. The line is the linear
regression fit with a 95% CI. The size of each dot represents the number of data
points. The positive trend demonstrates that the deeper participants getinto a
trial, the more likely they are to use consecutive comparisons.

2=15.92;95% Cl, (0.30, 0.60); shaker sort: §=0.30; P<0.001; z=4.74;
95%Cl, (0.18,0.43)). Younger children nonetheless showed the ability
to use these algorithmic solutions: even the youngest children in our
participant pool (four-year-olds and five-year-olds) showed some

capacity to use the identified algorithms. To illustrate the range of
successful but unclassified strategies, we also include a panel showing
examples of correctly completed trials that were not classified by our
algorithm-based analysis (Fig. 6).
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b Using shaker sort Behavioural data from
to solve P5, T5 P5,T5 Shaker sort pattern
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Fig. 5| Sorting algorithms and the patterns we used to identify them.

a, Selection sort and the pattern we used to identify it. Left, sequences of
comparisons generated by using selection sort. Middle, behavioural pattern
generated by participant 20 on test trial 6 (P20, T6) using selection sort. Right,
the pattern we used to identify the use of selection sort. b, Shaker sort and the

pattern we used to identify it. Left, sequences of comparisons generated by using
shaker sort. Middle, behavioural pattern generated by participant 5 on test trial 5
(PS5, T5) using shaker sort. Right, the pattern we used to identify the use of shaker
sort.Squares that are darkly shaded are comparisons that resulted in a swap.
Squares that are lightly shaded are comparisons that resulted ina non-swap.
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Fig. 6 | Children’s use of sorting algorithms. Examples of children’s raw
behaviours as they employed different sorting algorithms. The stacked bar plot
inthe middle shows the number of trials identified using at least one algorithm,
separated by age group and algorithm used. The percentage of trials identified
using at least one algorithm for each age group is annotated at the top of each
bar. Trials are categorized into three types: shaker only (orange), selection only

(green) and both (purple). The data show that older children increasingly use
both strategies. The surrounding panels show illustrative examples of children
employing shaker sort (orange), selection sort (green) and both (purple),
alongside correctly sorted trials where no identifiable algorithm was detected
(grey). The examples are arranged by age, with data from younger children on the
left within each algorithm category.

Table 2 | Pattern-matching results

Sorting algorithm Number of trials Number of participants
Selection sort only 89 (13.34%) 16 (13.01%)

Shaker sort only 120 (18.00%) 21(17.07%)

Both 21(3.15%) 30 (24.40%)

Neither 437 (65.51%) 56 (45.53%)

All 667 123

The number of trials and the number of participants that used selection sort, shaker sort, both
sorting algorithms and neither.

We also found that the use of identifiable sorting algorithms posi-
tively influences children’s sorting performance. Trialsin which at least
oneofthe two identifiable algorithms was used were significantly more
likely to be completed correctly (8=1.65; P<0.001; z=8.01; 95% Cl,
(1.25,2.05); see ‘Algorithm use and performance’in the Supplementary
Information for more information).

Our results indicate that not only do children perform well
at this more challenging version of a sorting task, but they also
independently discover and apply at least two efficient sorting
algorithms. These algorithms are efficient because they are easy
to implement and are guaranteed to give the correct final result,

and they both reflect behaviour that is structured, systematic and
goal-oriented.

Discussion

We show that children start to use efficient sorting algorithms earlier
thanpreviousresearch showed. By presenting children withamodified
sorting taskin which object ranks were hidden, this study demonstrates
that even young children can successfully complete the task, relying
oninferred rather thanvisible ordering. We show that older children’s
sorting behaviour shifted from spatial proximity to temporal proxim-
ity. We also show that accuracy improved with age, and our analysis
suggests that thisimprovementis partly driven by anincreased use of
identifiable and efficient sorting algorithms. Finally, we found that a
significant proportion of children employed at least one such algorithm
during the task. We show that many children flexibly used at least one
ofthe two sorting strategies across trials; notably, 30 children (24.4%)
used both strategies at different points in the experiment. This indi-
cates that algorithmic behaviour is not confined to a few particularly
skilled individuals butinstead reflects abroader developmental trend
inspontaneous strategic behaviour.

Together, these findings contribute to our understanding of cog-
nitive development and strategy acquisition. Beyond demonstrat-
ing children’s early competence in strategy use, our findings offer
new insights into the development of logical reasoning and strategy
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acquisition. By identifying children’s spontaneous use of structured
sorting algorithms without prior instruction, our results contribute to
broader theories of how goal-directed behaviour and abstract strategy
use emerge in early cognitive development. Methodologically, our
pattern-matching approach demonstrates how fine-grained behav-
ioural signatures, rather than only final accuracy, can reveal underly-
ing cognitive strategies that would otherwise go undetected. This
offers a promising framework for studying other domains of early
problem-solving. Practically, our results underscore the potential of
introducing foundational algorithmic thinking in early childhood,
even before formalinstruction, which hasimportantimplications for
designing educational interventions that support mathematical and
computational reasoning skills from a young age.

Our experiments show that children demonstrated surprisingly
high competenceinthese sorting tasks. Inastudy with adults done by
Thompson etal.*, participants were asked to sort siximages with hid-
denranks. Participants inthe asocial condition, inwhich they received
no guidinginformation on efficient sorting algorithms, yielded a 64.5%
average accuracy on these sorting tasks. Children in our experiment
produced an average accuracy of 38.68%. These results support the
theory that childrenstart to discover and use efficient algorithms from
avery young age. While Piaget®° and Piaget and Inhelder® pointed out
that children develop the ability to spontaneously seriate around the
age of seven, our results show that spontaneous systematic sorting
behaviours can be observed in children as young as four years old.
Our pattern-matching analysis also provides a possible explanation.

We found that children can spontaneously discover and use sys-
tematic algorithms far younger than Piaget and subsequent psychol-
ogists thought. These instances of algorithm use potentially went
undetected because they do not always yield correct performance.
For example, some children showed a tendency to use selection sort
but deviated from the algorithm during implementation, resultingin
an error in the final ordering. Another example is children using the
shaker sort algorithm but making only one pass, resulting in the final
ordering sometimes being correct and sometimes incorrect, depend-
ing on the initial ordering of the bunnies. Multiple domain-general
cognitive abilities, such as memory and motor capacities, might influ-
ence whether children are able to implement sorting algorithms and
achieve the correct final ordering. Older children may be better able
to handle the cognitive demands of more efficient strategies, such as
selection and shaker sort, which involve consecutive comparisons. This
trade-offbetween efficiency and cognitive cost may explain why we did
notobserve younger children using more complexalgorithms, such as
gnome sort, whichrequire a higher cognitive load due to their reliance
on constant backtracking, working memory demands and the need
to monitor multiple conditional steps in sequence. Importantly, the
presence of structured, process-driven behaviour evenamong younger
participants highlights that foundational strategic abilities are already
emerging at this stage. By shifting analytic focus from outcomes to
the structure of behaviour, our approach highlights how younger
children’s cognition may have been underestimated when evaluated
solely through accuracy. This perspective provides a richer view of
early algorithmic thinking and opens new directions for understanding
how cognitive strategies emerge and stabilize across development.

Our classification method was designed to detect meaningful
structure while allowing for partial algorithm use, which is especially
important when behaviour is noisy. As a result, our pattern-matching
analysis allowed us to identify participants who used identifiable algo-
rithms, even when they did not produce the correct final ordering
fromacompleteimplementation of the algorithm. For example, trials
were classified as selection sort with just five consistent comparisons,
rather thanrequiring full execution. Our motivation to apply aflexible
classifier was that for a participant to produce the signature pattern to
the degree of accuracy required by our analysis, the participant must
have aworking understanding of the structure of the algorithm and the

sequences of proceduresitimplies. While we did not test how relaxing
criteriamight affect classification rates, especially inyounger children,
this is a promising direction for future work. It could help determine
whether age differences reflect execution noise or access to different
strategies, as proposed by previous research?.

One limitation of our current approach is that we focused on two
specific, easily identifiable sorting algorithms. Other plausible strate-
gies, suchasgnomesort (which hasbeen observed inadult behaviour),
may also be present in children’s behaviour but are more difficult to
detectreliably using our current pattern-matching method, especially
given the short trial lengths and variable implementation typical of
younger participants. As aresult, non-classifiable trials, such as those
presented in Fig. 6 may reflect either unrecognized but structured
behaviour or genuinely inconsistent strategies. Future work could
expand the analytic framework toinclude abroader set of algorithmic
patterns or use unsupervised techniques to better characterize the full
range of children’s sorting behaviours.

Another limitation of the current study is that we cannot directly
test whether increased task demands promote more strategic behav-
iour. While our findings are consistent with this idea, future work
should systematically vary task demands and apply similar analytic
methods to determine how information constraints shape children’s
spontaneous strategy use.

Previous research has shown that infants can seriate only
under particular circumstances and only after they have observed a
demonstration**. Studies have also shown that young children’s seri-
ation performances can be improved through training*~*". However,
these training methods allinvolve letting children observe the proper
procedure of putting aset of objectsin order, and they work best when
children can already seriate, to some degree, before the training.

Our experiment makes a unique contribution in showing that
children can spontaneously discover and use efficient sorting algo-
rithms, without receiving guidance or observing demonstrations of
these sorting algorithms. Here we use the term ‘discovery’ to refer to
children’s spontaneous, self-guided generation of structured strate-
giesinthe absence of explicitinstruction. However, children’s learning
of algorithms needs to be incentivized by particular circumstances.
For instance, our sorting task adds cognitive demands that require
children to have a conceptual understanding of the task by removing
visual access to the ranks of objects. This characteristic might motivate
childrento use more structured sorting behaviours that reduce cogni-
tive demands and thus promote the discovery of algorithmic sorting
solutions. Since seriation is a fundamental building block for many
early math abilities and seriation performance is predictive of the
development of future math skills, our work hasimportantimplications
for educational interventions that aim to promote young children’s
math abilities.

Methods

Participants

Allexperiments were approved by the institutional review board of the
University of California at Berkeley under IRB protocol 2018-12-11653:
Learning, Attention, and Decision-Making Throughout Development.
All participants gave informed consent. A convenience sample of 154
children, ages four to nine, participated in this study inamuseum, alab
or a classroom setting. We removed 31 participants from the analysis
due to technical errors or failure to complete the experiment. The
analysis was done on the remaining 123 participants (mean age, 7.21;
s.d.,1.64). Table 1shows the age group breakdown.

Experiment design

We designed a sorting game that children can play ona touch-screen
computer. The game contains three practice trials and six test trials.
Figure 1 shows our experimental design. In every trial, children see
six animated bunnies. The bunnies have different heights, and the
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objective is to sort them into the correct order, with the shortest
bunny on the left and the tallest bunny on the right. In addition to
having different heights, the bunnies all wear different coloured
shoes. To prevent order effects, both the initial arrangement and
the shoe pattern of the bunnies were randomly generated for each
participant and each trial.

Duringeach trial, children performed a sequence of comparisons
until they were satisfied with the ordering. In each selection, they
chose two bunnies, and the two selected bunnies performed a pair-
wise comparison. If the bunnies were out of relative rank order (that
is, the leftmost selected bunny was taller than the rightmost selected
bunny), they changed places, resultinginaswap, asshowninFig.1c.If
the selected bunnies were already in the right relative order, asshown
in Fig. 1b, with the shorter one on the left and the taller one on the
right, then their positions did not change, resulting in a non-swap.
The number of comparisons used on a given trial is the sum of swaps
and non-swaps.

We used six-item arrays to strike a balance between complexity
and feasibility. This formatintroduces enough of a challenge to engage
children’s reasoning, while remaining manageable in our sequential
comparison paradigm where item heights are not visible and must be
inferred throughinteraction.

Analysis

For all regression analyses, we report effect sizes appropriate to the
model type. Specifically, for logistic regression models, we reportlog
odds ratios as the effect sizes, reflecting the change in the log odds of
the outcome per unit increase in the predictor. For linear regression
models, we report unstandardized f coefficients to facilitate intuitive
interpretation of the magnitude and direction of effects.

Procedure

In the first practice trial, children could see the bunnies, as shown in
the first panelin Fig. 1a. They advanced to the next practice trial only
after they successfully put the bunnies in the right order. However,
childrenreceived noinstructions on which bunnies they should select
toachievethe goal.Inthe second practicetrial, depicted inthe second
panelinFig.1a, children could see the bunnies standing behind agrey
glass window. They could see the different coloured shoes fully, but
they could not see the heights of the bunnies clearly. The purpose of
these two practice trials was to familiarize children with the demand
and the goal of asorting task. The second practice trial also prepared
them for the following trials, in which they could not see the heights
of the bunnies at all. In the final practice trial and all the test trials,
as shown in the remaining panels in Fig. 1a, children were not able to
see the bunnies’ different heights. They were told that these bunnies
were standing behind a grey curtain and that they could only see the
bunnies’ shoes. At the end of each trial, children verbally signalled to
the experimenter when they thought the bunnies were in the right
order, and they received a summary of whether the bunnies were
in the correct final order and the number of comparisons they had
performedin the trial.

There were two main reasons for allowing children to verbally
signal the experimenter to end atrial, rather than using an automated
system that would terminate the trial once the bunnies were correctly
sorted. First, we wanted childrento feel free toend atrial whenever they
feltit was appropriate—evenif the bunnies were not yet in the correct
order—andto avoid pressuring them to continue making comparisons
simply because the program had not yet signalled completion. Sec-
ond, we aimed to encourage children to reflect on their own sorting
behaviour,includingtheir decisions about when to stop. This approach
allowed us to observe whether children would continue applying a
correct sorting algorithm—even after the bunnies appeared to be
sorted—demonstrating an understanding that the algorithm ensures
the correct final order regardless of the initial configuration.

Exclusion criteria

An exclusion criterion was applied to remove trials in which children
either appeared to exert insufficient effort to solve the task or used
an unusually high number of comparisons relative to their peers. The
principle underlying this exclusion was established prior to data col-
lection, while the specific numerical threshold was determined on the
basis of the observed data.

We excluded a trial if it contained fewer than five comparisons
or more than three standard deviations from the mean number of
comparisons (46). This exclusion criterion was chosen because the
minimum reliable solution to a pairwise comparison sorting problem
of six items requires ten comparisons, and we consider a trial invalid
when the child participant did not use at least half of the necessary
minimum number of comparisons. The mean length across all partici-
pantsacross all trials without exclusionis 15.82. The standard deviation
of the length across all participants across all trials without exclusion
is10.29. The cut-offis 46 comparisons. After we applied this exclusion
criterion, 71trials were excluded, and 667 trials (90.38%) were kept for
all the following analyses.

Chance accuracy

We conducted an exploratory analysis to assess the reliability of our
results on performance accuracy and to ensure that the observed
accuracies were not simply due to children randomly selecting pairs
ofbunnies for each comparison. We calculated abaseline chance accu-
racy for all participants as the probability that a participant performs
correctly on a trial by randomly selecting two bunnies in every com-
parison. Chance accuracy is calculated by using a permutation test:
for every valid trial, given the initial positions of the bunnies and the
number of comparisons performed by the participant during this
trial, we calculated the chance of a participant achieving a correct final
ordering whenthey performevery comparison by randomly selecting
two bunnies. The chance accuracy of 1,000 permutations per trial is
19.93%. This means that, onaverage, if participants were selecting pairs
of bunnies randomly, their accuracy should be 19.93%. Given that the
average percentage accuracy for all participantsis 38.68%, higher than
the chance accuracy, we show that participants were not randomly
selecting pairs of bunnies.

Efficiency
We denote efficiency as the number of comparisons (swap and
non-swap) that a participant performed in atrial.

Algorithm identification
Weselected twoidentifiable and efficient sorting algorithms: selection
sort and shaker sort. We used a pattern-matching analysis method to
identify whetheratrial used one, both or neither of these two algorithms.

Theselectionsortalgorithmsortsanarray by repeatedly selecting
the smallest (or largest) element from the unsorted portion. The pat-
tern we used to identify the use of selection sort is a five-comparison
patterninvolving the participant establishing either the smallest ele-
ment or the largest element of the list by repeatedly comparing the
leftmost or the rightmost bunny with all other bunnies. A trial was
categorized as using selection sort if the participant’s comparison
sequence for atrial contained this pattern. To allow for partial or imper-
fectimplementations, especiallyamong younger children, we chosea
five-comparison threshold for detecting each algorithm. This thresh-
old captures structured patterns that are unlikely to arise by chance,
without requiring a full execution of the algorithm. While stricter or
more lenient criteria could affect classification rates, especially devel-
opmentally, we opted for a balanced approach to enable meaningful
yet flexible detection of strategy use.

The shaker sort algorithm sorts an array by selecting two con-
secutive elements ata time and moving the selection from left to right
and then from right to left until the participant arrives at the correct
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ordering. The pattern we used to identify the use of shaker sort is
a five-comparison pattern involving the participant selecting two
adjacent bunnies either from left to right or from right to left. A trial
was categorized as using selection sort if the participant’s comparison
sequence for a trial contained this pattern.

Note that a trial can be categorized as using both of these two
sorting algorithms. Our analysis focused on two algorithms with clear
and compact behavioural signatures that are detectable in short tri-
als. Other algorithms, such as gnome sort, may be more difficult to
distinguish reliably in child behaviour due to shorter sequences and
more variableimplementation, and were therefore not included in this
initial classification scheme.

Our pattern-matching analysis results are shown in Table 2. They
show that 34.48% of trials and 54.47% of participants used at least one
of these sorting algorithms. Our results also show that, in general, par-
ticipants used shaker sort more frequently thanselection sort. We also
show thatasignificant percentage of participants can use both sorting
algorithms, providing supportive evidence for the variety of strategies
that children could employ to solve the sorting task.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data fromall experiments are available at https://osf.io/sepzw/.

Code availability

The code for the analysesis available at https://osf.io/sepzw/.
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