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Children spontaneously discover efficient 
solutions to a difficult sorting task
 

Huiwen Alex Yang    1  , Bill D. Thompson    1,2 & Celeste Kidd1,2

Efficient algorithms can enhance problem-solving in many cognitive 
domains but can be difficult to discover and use. For example, classical 
studies of seriation suggest that children struggle to apply algorithmic 
strategies in a simple sorting problem. We investigated the spontaneous 
discovery of algorithmic solutions across development. We gave children 
a variant of the sorting problem with hidden object ranks: children sort 
animated bunnies into the right order, from the shortest to the tallest, 
when the bunnies are standing behind a wall so their heights are not 
visible. Children performed far above chance on this difficult sorting task, 
potentially because higher demands in memory and reasoning incentivized 
strategic behaviours. Children also independently discovered at least 
two efficient algorithmic solutions to the sorting problem: selection sort 
and shaker sort. Additionally, our developmental results show that older 
children were more effective sorters than younger children and used 
efficient sorting algorithms more frequently. These results indicate that 
children are far more competent at applying algorithmic solutions to 
sorting tasks than previous research would suggest, and performance on 
sorting tasks improves throughout development. Our work demonstrates 
that children have the ability to spontaneously organize their behaviours 
and find effective solutions to challenges in the world.

Imagine that you are baking a dozen cookies. One approach is to mix 
the ingredients and bake each individual cookie 12 times. A more effi-
cient approach is to execute the mixing and baking processes only 
once for the entire batch. Both methods produce identical results, but 
the latter represents a more efficient strategy. Strategies are special 
cases of procedural knowledge that can take the forms of algorithms, 
which are step-by-step, formulaic techniques that, when followed 
properly, yield the correct solutions to problems1,2. The acquisition 
and use of cognitive algorithms are important because structured 
forms of problem-solving can enhance performance at many tasks3–5. 
Some example domains in which people often rely on algorithmically 
structured knowledge include memory strategies6–9, mathematical 
cognition10–12 and grammatical rules10,13.

The use of strategies to accomplish cognitive tasks is affected by 
many domain-general cognitive abilities, such as working memory 

capacity, inhibition control, cognitive flexibility and processing speed14–17.  
On the one hand, previous research has shown that children start to be 
strategic even when they are very young7,18, and they become increas-
ingly capable of using more efficient strategies as they age8,19–21. Research 
has also shown that children are very competent in choosing adap-
tively among various algorithms, depending on specific constraints or 
demands of the tasks22–24.On the other hand, young children have been 
shown to struggle to apply systematic strategies because they have 
underdeveloped domain-general cognitive abilities25–28. In this paper, 
we provide evidence that shows children’s spontaneous discovery of 
efficient sorting strategies, countering all conventional expectations, 
according to the current developmental psychology literature. Our work 
demonstrates that children can spontaneously organize their behaviour 
in a more systematic manner than previous research suggests, and that 
they do so to develop efficient solutions to the challenges they encounter.
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discovery of strategies. Importantly, our analysis highlights that stra-
tegic behaviour can be observed even when children’s final answers 
are incorrect, which suggests that process-based analyses can reveal 
children’s algorithmic thinking that might otherwise go unnoticed.

Results
Children are able to sort objects, even when the ordering of the 
objects is hidden
Our results show that all children (123 out of 123) were able to sort the bun-
nies in the practice trials in which they were visible (practice trials 1 and 2).  
This indicates that children as young as four years old have the ability 
to sort. Our results extend prior findings showing that young children 
can successfully sort small arrays in which items of the arrays are visible, 
demonstrating an understanding of relative size when direct comparison 
is possible32,40. In all test trials, we tested children’s sorting abilities in a 
more demanding context, where the items are not visible and their rela-
tive ranks must be inferred from the outcomes of pairwise comparisons.

Figure 3a shows the distribution of participants’ accuracy, sepa-
rated by age group. In this figure, percentage accuracy is defined as the 
proportion of testing trials included in the analysis that resulted in the 
correct final ordering. We excluded a trial if it contained fewer than five 
comparisons or more than three standard deviations from the mean 
number of comparisons (46). As a result, 667 trials (90.38%) were kept 
for all following analyses (see ‘Exclusion criteria’ in the Methods for 
details). A substantial portion of children performed the sorting task 
correctly even when the heights of the bunnies were not visible: children 
showed an average 38.68% accuracy in all testing trials, notably higher 
than chance accuracy (19.93%; see ‘Chance accuracy’ in the Methods for 
details). It also shows that older children are more clustered towards 
higher accuracies. Children’s accuracy results are interesting in light of 
children’s reported failures in applying structured and efficient strate-
gies in previous similar and simpler seriation tasks30,31. This difference 
may suggest that the higher memory and reasoning demands of our sort-
ing tasks motivated children to find more efficient algorithmic solutions.

Older children are more accurate sorters
Older children performed better on our sorting task: their accuracy 
across six test trials is higher than that of younger children. Figure 3b 
shows children’s percentage accuracy as a function of age. The percent-
age of trials that older children performed correctly is significantly 
greater than that of younger children (β = 0.35; P < 0.001; z = 4.61; 95% 
confidence interval (CI), (0.20, 0.50)).

Figure 3c shows test trial accuracies averaged across participants 
and separated by age groups. It shows that participants’ average sort-
ing accuracies do not fluctuate throughout the experiment. Younger 
children’s accuracies appear to decrease with practice, potentially 
due to a decrease in attention and interest over time. Older children’s 
accuracies appear to increase with practice, suggesting that their 
performance on later trials may benefit from their experiences with 
previous trials in the experiment. The positive practice effect in older 
children is shown by the positive interaction between age and trial 
number (β = 0.19; P = 0.023; z = 2.27; 95% CI, (0.03, 0.36); see ‘Accuracy’ 
in the Supplementary Information for more information).

It is also worth noting that older children were not using  
more comparisons than younger children on correctly performed  
test trials (β = 0.39; P = 0.285; t256 = 1.07; 95% CI, (−0.32, 1.09); Bayes 
factor (BF10), 0.24). One possible explanation is that older children’s 
sorting behaviours might be more efficient than those of younger 
children, and this allows them to have a higher accuracy while not 
using more comparisons.

Older children’s sorting behaviour shifts from spatial 
proximity to temporal proximity
To facilitate a greater understanding of the developmental results, 
we analysed the behavioural structure of participants’ responses.  

The goal of this paper is to investigate the spontaneous discovery 
of structured algorithmic strategies by children. In particular, we exam-
ined the algorithmic structure in children’s behaviours when solving 
a difficult sorting task. Sorting is considered a fundamental problem 
in computer science. It is a rich and interesting problem because it 
requires the use of strategies for executing an appropriate sequence 
of actions to achieve the correct final ordering of objects29. Sorting 
is the basic building block of many mathematical and programming 
problems. Its solutions have therefore been studied extensively, and 
various algorithms with different spatial and temporal efficiency can 
be used to solve a sorting task29. For instance, the well-known bubble 
sort algorithm sorts effectively by repeatedly iterating through a list, 
comparing adjacent elements, and swapping them if they are in the 
wrong order, causing larger elements to ‘bubble up’ to the top of the 
list until the entire list is sorted.

Our sorting task tests a skill that Jean Piaget called seriation. The 
Piagetian version of the task studies the behaviours of children by ask-
ing them to arrange a disordered set of sticks of different lengths into 
the correct order30,31. Since then, similar tasks have been used with chil-
dren to show developmental changes in seriation abilities32–35. Children 
are thought to progress through predictable developmental stages 
before they can consistently use efficient sorting strategies. Classic 
work suggests that children under age seven generally struggle with 
applying structured and efficient strategies: young children tend to rely 
on unsystematic trial-and-error approaches36. Around age seven, they 
begin to use efficient strategies more consistently and effectively36,37. 
These findings contributed to the widely held assumption that effi-
cient, algorithm-like strategies are largely beyond the grasp of young 
children. Seriation is an important skill for children to master because 
it is crucial for the development of early math skills38. For instance, it is 
theorized to be the foundation of the comprehension of relationships 
between numbers39 and is predictive of the comprehension of the num-
ber line35. Learning accurate and efficient algorithms to perform the 
seriation task is therefore closely linked to the development of more 
general numerical abilities and mathematics cognition.

Our experiment used a sorting problem with hidden object ranks 
(Fig. 1). In this case, children were told to rank objects according to 
their heights, but they could not see the heights of those objects. 
To make the task engaging and enjoyable, we designed it to be both 
interactive and fun. Children, ages four to ten, were asked to sort six 
bunnies from the shortest to the tallest on a touch-screen computer 
(see Table 1 for the age group breakdown). For each participant and 
each trial, the initial order of the bunnies was randomly generated (see 
‘Difficulty’ in the Supplementary Information for detailed analyses 
of the out-of-orderness in the initial arrangements). Children were 
familiarized with the sorting task by performing three practice trials 
in which the heights of the bunnies were visible, partially visible and 
not visible (Fig. 1a). For all six test trials, the heights of the bunnies 
were not visible (Fig. 1a). In each trial, children performed a series of 
pairwise comparisons by selecting two bunnies for every comparison 
until they thought they had achieved the correct final ordering of the 
bunnies. Only pairs that were out of order would actually switch posi-
tions, resulting in a swap (Fig. 1c). If the selected pair was already at the 
correct relative order, then they would not switch positions, resulting 
in a non-swap (Fig. 1b). At the end of each trial, children were given feed-
back regarding their accuracy and efficiency before they moved on to 
the next trial (see ‘Experiment design’ and ‘Procedure’ in the Methods 
as well as ‘Experiment’ in the Supplementary Information for details).

We then analysed the algorithmic structure of children’s behaviour 
by identifying key patterns in their behaviour that are foundations of 
efficient sorting algorithms. Our results show that children achieved 
high accuracies on these sorting tasks, and they also spontaneously 
discovered and used at least two efficient sorting algorithms, selection 
sort and shaker sort (these two sorting algorithms are illustrated in 
Fig. 2). Our research provides new evidence of children’s spontaneous 
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We looked at two types of comparisons participants can perform: adja-
cent comparisons and consecutive comparisons. An adjacent compari-
son is a selection in which the two bunnies chosen occupy neighbouring 
positions. A consecutive comparison is a selection in which one of the 
positions matches a position chosen in the previous comparison. Note 
that adjacent and consecutive comparisons are not mutually exclusive; 
a single comparison may qualify as both, either or neither. Both types of 
comparisons are essential building blocks of many identifiable sorting 
algorithms. For instance, if a participant is using shaker sort (details 
below), then they will frequently use adjacent comparisons, and if a 
participant is using selection sort, they will frequently use consecutive 
comparisons and adjacent comparisons.

These two types of comparisons, however, differ in their demands 
on participants’ cognitive abilities. To perform adjacent compari-
sons, participants do not need to remember which positions they 
selected in the previous comparison. However, to perform consecutive 

comparisons, participants have to remember at least one selected 
position from the previous comparison to select the same position 
again. Consecutive comparisons therefore have a higher demand for 
participants’ abilities to memorize and track what they have selected or 
to use a strategy that encodes this regularity. Consecutive comparisons 
are also more demanding because they require participants to click on 
two bunnies that are not necessarily close to each other. Furthermore, 
consecutive comparisons demand a higher level of conceptual under-
standing of object relations in the sense that for participants to select 
two bunnies that are not adjacent, they would have to understand that 
two objects that are not placed immediately next to each other may also 
be related and have properties that can be compared.

We performed a generalized linear regression analysis using a 
binomial link function with random participant effects to assess the 
effect of age on the types of comparisons participants used. The results 
show that while age does not have a significant effect on the percent-
age of adjacent comparisons participants used (β = −0.04; P = 0.457; 
z = −0.74; 95% CI, (−0.14, 0.06); Fig. 4a), older children were more likely 
to perform consecutive comparisons (β = 0.22; P < 0.001; z = 5.15; 95% 
CI, (0.14, 0.30); Fig. 4b; see ‘Comparison analysis’ in the Supplementary 
Information for more information). Our results provide supporting evi-
dence for the theory that consecutive comparisons require increased 
cognitive resources.

We also performed an additional set of generalized linear regres-
sion analyses using a binomial link function with random participant 
effects to assess whether being further into the experiment or a trial 
influenced the types of comparisons participants used. The results 
show that children were less likely to perform adjacent comparisons 
when they were further into a trial (β = −0.12; P < 0.001; z = −5.194; 

Practice trial 1Practice Trial 1

Practice trial 2Practice Trial 2

Practice trial 3Practice Trial 3

Test trial 1

Test trial 6Test Trial 6

After selectionAfter selection

After selectionAfter selection

Non-swapNon-swap

SwapSwap

a b

c

Fig. 1 | Study design and procedure. a, Illustration of the study procedure, 
including practice trials and test trials. During each trial, the participants sorted 
six bunnies in the correct order. In practice trial 1, the heights were fully visible; 

in practice trial 2, the heights were partially visible; and in practice trial 3 and 
the test trials, the heights were not visible. b, An example of a comparison that 
resulted in a non-swap. c, An example of a comparison that resulted in a swap.

Table 1 | Age groups and the number of participants in each 
age group

Age group Number of participants

4 16

5 18

6 21

7 22

8 21

9 25
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95% CI, (−0.16, −0.074); Fig. 4c). In contrast, children were more likely 
to perform consecutive comparisons when they were further into 
a trial (β = 0.31; P < 0.001; z = 12.348; 95% CI, (0.26, 0.35); Fig. 4d). 
Our results show that the more experience and practice children 
had, the more likely they were to realize the flexibility and utility of 
consecutive comparisons and start incorporating them into their 
sorting strategies. As a result, children who heavily relied on adjacent 
comparisons gradually transitioned to increase their use of consecu-
tive comparisons, which may contribute to the increase in efficiency 
that we see in Fig. 3b.

Together, these results point to behavioural differences between 
more efficient sorters and less efficient sorters. They also offer a pos-
sible explanation as to why older children were more efficient, and why 
children’s efficiency increased during the experiment.

Children discover and use various sorting algorithms
We analysed the algorithmic structure of the strategies children used 
to understand these behavioural differences in more detail. We per-
formed a pattern-matching analysis on the sequences of comparisons 
that they performed in each trial to identify specific algorithms. As 
Thompson et al.41 demonstrated, participants who use different algo-
rithms exhibit different identifiable signature behavioural patterns. 
Children appeared to engage more frequently with exploratory behav-
iours, patterns of comparisons that do not align with any identifiable 
sorting algorithm but still reflect engagement with the task, rather 

than precisely following a specific algorithm, in contrast to adults (see 
‘Exploratory behavior’ in the Supplementary Information for some 
examples). It is therefore challenging to align their full sequences of 
comparisons with a specific algorithm without substantial errors in clas-
sification. Even when children are using algorithms in problem-solving, 
they also frequently deviate from the algorithms that they are using, 
producing incomplete implementations of strategies. We identified 
key signature patterns for the two sorting algorithms that children 
discovered to overcome this difficulty in data analysis. We classified a 
participant as using a particular algorithm if the participant produced a 
sequence of comparisons that contains the signature pattern anywhere 
throughout the trial.

The two most common algorithms were selection sort (also the 
most common algorithm used by adults) and shaker sort (less common 
among adults, but attested). Figure 5 shows the signature sequences of 
comparisons generated by using these two algorithms. Selection sort 
generates a fixed sequence of 15 comparisons that are guaranteed to 
establish the correct order. It can also be separated into forward selec-
tion sort and backward selection sort, depending on whether the par-
ticipant starts from the left or the right. The left panel of Fig. 5a shows 
an example of the sequence of comparisons that would be generated 
if a participant were using the selection sort algorithm. In this figure, 
the top row represents the initial ordering of the bunnies, such that 
0 represents the shortest bunny and 5 represents the tallest bunny. 
The bottom row represents the final ordering. Every row represents 

4 5 1 3 2 0

4 5 1 3 0 2

4 5 1 2 0 3

4 5 1 2 0 3

4 3 1 2 0 5

4 3 1 2 0 5

4 3 1 0 2 5

4 3 1 0 2 5

4 2 1 0 3 5

3 2 1 0 4 5

3 2 0 1 4 5

3 1 0 2 4 5

2 1 0 3 4 5

2 0 1 3 4 5

1 0 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Selection sort 

0 4 2 3 1 5

0 4 2 3 1 5

0 2 4 3 1 5

0 2 3 4 1 5

0 2 3 1 4 5

0 2 3 1 4 5

0 2 3 1 4 5

0 2 1 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Initial order

First comparison

Second comparison

Third comparison

Fourth comparison

Fifth comparison

Final order

Initial order

Final order

First comparison

Second comparison

Third comparison

Fourth comparison

Fifth comparison

Shaker sort

a b

Fig. 2 | Illustrations of two different sorting algorithms: selection sort and 
shaker sort. a, An example of using the selection sort algorithm to solve the 
sorting task. b, An example of using the shaker sort algorithm to solve the sorting 
task. The first row indicates the initial order of the bunnies, and the last row 
indicates the order of the bunnies when the trial is finished. Every row in between 

indicates a comparison, with two shaded positions being the two bunnies 
selected by the participant in the comparison. Squares that are darkly shaded 
are comparisons that resulted in a swap. Squares that are lightly shaded are 
comparisons that resulted in a non-swap.
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a comparison, with two selected positions shaded. Darker positions 
indicate a swap, and lightly shaded positions indicate a non-swap. 
The numbers in every row represent the ordering of the bunnies after 
each comparison. The middle panel of Fig. 5a shows behavioural 
patterns generated by a participant when they faced a trial with the 
same initial orderings as shown in the left panel. Consistent with our 
expectation, children’s actual behaviour shows redundant comparison 
attempts and deviations from the most efficient implementation of 
the algorithm, but nonetheless clear signs of algorithmic structure. 
The pattern we used to identify the use of selection sort is shown in 
the right panel of Fig. 5a.

Shaker sort is achieved by selecting two adjacent bunnies at a time 
and moving the selection from left to right, and then from right to left, 
until the participant arrives at the correct ordering (imagine shaking 
a horizontal bottle, side to side). It can also be separated into forward 
shaker sort and backward shaker sort, depending on which side the 
participant started at. Shaker sort also guarantees accuracy if applied 
for enough iterations (shakes). However, the number of iterations 
required does depend on the specific initial ordering of the bunnies. 

Figure 5b shows an example of using the shaker sort algorithm with 
maximum efficiency, as well as behavioural results from a participant 
using this algorithm. The pattern we used to identify the use of shaker 
sort is shown in the right panel of Fig. 5b.

Our pattern-matching analysis shows that for a notable percentage 
of trials (34.48%, 230 out of 667 trials; Fig. 6), participants performed 
a sequence of comparisons that were consistent with them using at 
least one identifiable sorting algorithm. There are 110 trials in which 
participants’ behaviour aligns with the pattern of using selection sort 
(chance level, 0.003%; examples shown in Fig. 6; see Supplementary 
Information), 141 trials in which participants’ behaviour aligns with 
the pattern of using shaker sort (chance level, 0.13%; examples shown 
in Fig. 6; see Supplementary Information) and 21 trials in which par-
ticipants’ behaviour aligns with the pattern of using both algorithms 
(Table 2 shows the number of trials and participants in each algorithm 
category). On the participant level, our pattern-matching analysis 
shows that 67 participants used at least one identifiable algorithm 
(54.47%). Figure 6 also indicates that older children used these two iden-
tified algorithms more frequently (selection sort: β = 0.45; P < 0.001; 
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Fig. 3 | Results. a, Distribution of participants’ accuracy by age group. The 
stacked bar chart shows the number of participants across different accuracy 
ranges (0–100%) for each age group, with younger participants generally having 
lower accuracies and older participants having higher accuracies. b, Percentage 
accuracy as a function of age (red solid line), with each dot representing an 
individual participant’s performance. The line is the linear regression fit with a 
95% CI. A significant portion of the red line is above the chance level  

(black dashed line), indicating that children’s performances are significantly 
better than chance. The positive slope of our fit line also shows that older 
children have higher accuracy. c, Accuracy across test trials for all age groups. 
The top panel shows the average accuracy trend for all participants, while the 
lower panels break it down by individual age groups. Each plot shows fluctuations 
in accuracy over six test trials, with only older children showing practice effects. 
The error bars represent one s.e.m.
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z = 5.92; 95% CI, (0.30, 0.60); shaker sort: β = 0.30; P < 0.001; z = 4.74; 
95% CI, (0.18, 0.43)). Younger children nonetheless showed the ability 
to use these algorithmic solutions: even the youngest children in our 
participant pool (four-year-olds and five-year-olds) showed some 

capacity to use the identified algorithms. To illustrate the range of 
successful but unclassified strategies, we also include a panel showing 
examples of correctly completed trials that were not classified by our 
algorithm-based analysis (Fig. 6).
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Fig. 4 | Children’s use of adjacent and consecutive comparisons during 
sorting. a, An example of an adjacent comparison. An adjacent comparison is 
a selection in which the two bunnies chosen occupy neighbouring positions. 
b, An example of a consecutive comparison. A consecutive comparison is a 
selection in which one of the positions matches a position chosen in the previous 
comparison. c, Proportion of comparisons that are adjacent comparisons as a 
function of age. The line is the linear regression fit with a 95% CI. The flat trend 
indicates that older and younger children used similar proportions of adjacent 
comparisons. d, Proportion of comparisons that are consecutive comparisons 
as a function of age. The line is the linear regression fit with a 95% CI. The positive 

trend demonstrates that older children used a greater proportion of consecutive 
comparisons. e, Proportion of comparisons that are adjacent comparisons as a 
function of comparison number. The line is the linear regression fit with a 95% 
CI. The size of each dot represents the number of data points. The negative trend 
demonstrates that the deeper participants get into a trial, the less likely they are 
to use adjacent comparisons. f, Proportion of comparisons that are consecutive 
comparisons as a function of comparison number. The line is the linear 
regression fit with a 95% CI. The size of each dot represents the number of data 
points. The positive trend demonstrates that the deeper participants get into a 
trial, the more likely they are to use consecutive comparisons.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02302-6

4 5 1 3 2 0

4 5 1 3 0 2

4 5 1 2 0 3

4 5 1 2 0 3

4 3 1 2 0 5

4 3 1 2 0 5

4 3 1 0 2 5

4 3 1 0 2 5

4 2 1 0 3 5

3 2 1 0 4 5

3 2 0 1 4 5

3 1 0 2 4 5

2 1 0 3 4 5

2 0 1 3 4 5

1 0 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

a Using selection sort
to solve P20, T6

6.5

11.5

18.5

4 5 1 3 2 0

4 5 1 3 0 2

4 5 1 2 0 3

4 5 1 2 0 3

4 3 1 2 0 5

4 3 1 2 0 5

4 3 1 0 2 5

4 3 1 0 2 5

4 2 1 0 3 5

3 2 1 0 4 5

3 2 0 1 4 5

3 2 0 1 4 5

3 1 0 2 4 5

2 1 0 3 4 5

2 0 1 3 4 5

1 0 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Behavioural data from
P20, T6

4 5 1 3 2 0

4 5 1 3 0 2

4 5 1 2 0 3

4 5 1 2 0 3

4 3 1 2 0 5

4 3 1 2 0 5

4 3 1 0 2 5

Selection sort pattern

0 4 2 3 1 5

0 4 2 3 1 5

0 2 4 3 1 5

0 2 3 4 1 5

0 2 3 1 4 5

0 2 3 1 4 5

0 2 3 1 4 5

0 2 1 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

b Using shaker sort
to solve P5, T5

0 4 2 3 1 5

0 4 2 3 1 5

0 2 4 3 1 5

0 2 3 4 1 5

0 2 3 1 4 5

0 2 3 1 4 5

0 2 3 1 4 5

0 2 1 3 4 5

0 2 1 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

Behavioural data from
P5, T5

0 4 2 3 1 5

0 2 4 3 1 5

0 2 3 4 1 5

0 2 3 1 4 5

0 2 3 1 4 5

0 2 3 1 4 5

0 2 3 1 4 5

Shaker sort pattern

Fig. 5 | Sorting algorithms and the patterns we used to identify them. 
a, Selection sort and the pattern we used to identify it. Left, sequences of 
comparisons generated by using selection sort. Middle, behavioural pattern 
generated by participant 20 on test trial 6 (P20, T6) using selection sort. Right, 
the pattern we used to identify the use of selection sort. b, Shaker sort and the 

pattern we used to identify it. Left, sequences of comparisons generated by using 
shaker sort. Middle, behavioural pattern generated by participant 5 on test trial 5 
(P5, T5) using shaker sort. Right, the pattern we used to identify the use of shaker 
sort. Squares that are darkly shaded are comparisons that resulted in a swap. 
Squares that are lightly shaded are comparisons that resulted in a non-swap.
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We also found that the use of identifiable sorting algorithms posi-
tively influences children’s sorting performance. Trials in which at least 
one of the two identifiable algorithms was used were significantly more 
likely to be completed correctly (β = 1.65; P < 0.001; z = 8.01; 95% CI, 
(1.25, 2.05); see ‘Algorithm use and performance’ in the Supplementary 
Information for more information).

Our results indicate that not only do children perform well 
at this more challenging version of a sorting task, but they also 
independently discover and apply at least two efficient sorting 
algorithms. These algorithms are efficient because they are easy 
to implement and are guaranteed to give the correct final result, 

and they both reflect behaviour that is structured, systematic and 
goal-oriented.

Discussion
We show that children start to use efficient sorting algorithms earlier 
than previous research showed. By presenting children with a modified 
sorting task in which object ranks were hidden, this study demonstrates 
that even young children can successfully complete the task, relying 
on inferred rather than visible ordering. We show that older children’s 
sorting behaviour shifted from spatial proximity to temporal proxim-
ity. We also show that accuracy improved with age, and our analysis 
suggests that this improvement is partly driven by an increased use of 
identifiable and efficient sorting algorithms. Finally, we found that a 
significant proportion of children employed at least one such algorithm 
during the task. We show that many children flexibly used at least one 
of the two sorting strategies across trials; notably, 30 children (24.4%) 
used both strategies at different points in the experiment. This indi-
cates that algorithmic behaviour is not confined to a few particularly 
skilled individuals but instead reflects a broader developmental trend 
in spontaneous strategic behaviour.

Together, these findings contribute to our understanding of cog-
nitive development and strategy acquisition. Beyond demonstrat-
ing children’s early competence in strategy use, our findings offer 
new insights into the development of logical reasoning and strategy 
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Fig. 6 | Children’s use of sorting algorithms. Examples of children’s raw 
behaviours as they employed different sorting algorithms. The stacked bar plot 
in the middle shows the number of trials identified using at least one algorithm, 
separated by age group and algorithm used. The percentage of trials identified 
using at least one algorithm for each age group is annotated at the top of each 
bar. Trials are categorized into three types: shaker only (orange), selection only 

(green) and both (purple). The data show that older children increasingly use 
both strategies. The surrounding panels show illustrative examples of children 
employing shaker sort (orange), selection sort (green) and both (purple), 
alongside correctly sorted trials where no identifiable algorithm was detected 
(grey). The examples are arranged by age, with data from younger children on the 
left within each algorithm category.

Table 2 | Pattern-matching results

Sorting algorithm Number of trials Number of participants

Selection sort only 89 (13.34%) 16 (13.01%)

Shaker sort only 120 (18.00%) 21 (17.07%)

Both 21 (3.15%) 30 (24.40%)

Neither 437 (65.51%) 56 (45.53%)

All 667 123

The number of trials and the number of participants that used selection sort, shaker sort, both 
sorting algorithms and neither.
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acquisition. By identifying children’s spontaneous use of structured 
sorting algorithms without prior instruction, our results contribute to 
broader theories of how goal-directed behaviour and abstract strategy 
use emerge in early cognitive development. Methodologically, our 
pattern-matching approach demonstrates how fine-grained behav-
ioural signatures, rather than only final accuracy, can reveal underly-
ing cognitive strategies that would otherwise go undetected. This 
offers a promising framework for studying other domains of early 
problem-solving. Practically, our results underscore the potential of 
introducing foundational algorithmic thinking in early childhood, 
even before formal instruction, which has important implications for 
designing educational interventions that support mathematical and 
computational reasoning skills from a young age.

Our experiments show that children demonstrated surprisingly 
high competence in these sorting tasks. In a study with adults done by 
Thompson et al.41, participants were asked to sort six images with hid-
den ranks. Participants in the asocial condition, in which they received 
no guiding information on efficient sorting algorithms, yielded a 64.5% 
average accuracy on these sorting tasks. Children in our experiment 
produced an average accuracy of 38.68%. These results support the 
theory that children start to discover and use efficient algorithms from 
a very young age. While Piaget30 and Piaget and Inhelder31 pointed out 
that children develop the ability to spontaneously seriate around the 
age of seven, our results show that spontaneous systematic sorting 
behaviours can be observed in children as young as four years old. 
Our pattern-matching analysis also provides a possible explanation.

We found that children can spontaneously discover and use sys-
tematic algorithms far younger than Piaget and subsequent psychol-
ogists thought. These instances of algorithm use potentially went 
undetected because they do not always yield correct performance. 
For example, some children showed a tendency to use selection sort 
but deviated from the algorithm during implementation, resulting in 
an error in the final ordering. Another example is children using the 
shaker sort algorithm but making only one pass, resulting in the final 
ordering sometimes being correct and sometimes incorrect, depend-
ing on the initial ordering of the bunnies. Multiple domain-general 
cognitive abilities, such as memory and motor capacities, might influ-
ence whether children are able to implement sorting algorithms and 
achieve the correct final ordering. Older children may be better able 
to handle the cognitive demands of more efficient strategies, such as 
selection and shaker sort, which involve consecutive comparisons. This 
trade-off between efficiency and cognitive cost may explain why we did 
not observe younger children using more complex algorithms, such as 
gnome sort, which require a higher cognitive load due to their reliance 
on constant backtracking, working memory demands and the need 
to monitor multiple conditional steps in sequence. Importantly, the 
presence of structured, process-driven behaviour even among younger 
participants highlights that foundational strategic abilities are already 
emerging at this stage. By shifting analytic focus from outcomes to 
the structure of behaviour, our approach highlights how younger 
children’s cognition may have been underestimated when evaluated 
solely through accuracy. This perspective provides a richer view of 
early algorithmic thinking and opens new directions for understanding 
how cognitive strategies emerge and stabilize across development.

Our classification method was designed to detect meaningful 
structure while allowing for partial algorithm use, which is especially 
important when behaviour is noisy. As a result, our pattern-matching 
analysis allowed us to identify participants who used identifiable algo-
rithms, even when they did not produce the correct final ordering 
from a complete implementation of the algorithm. For example, trials 
were classified as selection sort with just five consistent comparisons, 
rather than requiring full execution. Our motivation to apply a flexible 
classifier was that for a participant to produce the signature pattern to 
the degree of accuracy required by our analysis, the participant must 
have a working understanding of the structure of the algorithm and the 

sequences of procedures it implies. While we did not test how relaxing 
criteria might affect classification rates, especially in younger children, 
this is a promising direction for future work. It could help determine 
whether age differences reflect execution noise or access to different 
strategies, as proposed by previous research21.

One limitation of our current approach is that we focused on two 
specific, easily identifiable sorting algorithms. Other plausible strate-
gies, such as gnome sort (which has been observed in adult behaviour), 
may also be present in children’s behaviour but are more difficult to 
detect reliably using our current pattern-matching method, especially 
given the short trial lengths and variable implementation typical of 
younger participants. As a result, non-classifiable trials, such as those 
presented in Fig. 6 may reflect either unrecognized but structured 
behaviour or genuinely inconsistent strategies. Future work could 
expand the analytic framework to include a broader set of algorithmic 
patterns or use unsupervised techniques to better characterize the full 
range of children’s sorting behaviours.

Another limitation of the current study is that we cannot directly 
test whether increased task demands promote more strategic behav-
iour. While our findings are consistent with this idea, future work 
should systematically vary task demands and apply similar analytic 
methods to determine how information constraints shape children’s 
spontaneous strategy use.

Previous research has shown that infants can seriate only 
under particular circumstances and only after they have observed a 
demonstration42–44. Studies have also shown that young children’s seri-
ation performances can be improved through training45–47. However, 
these training methods all involve letting children observe the proper 
procedure of putting a set of objects in order, and they work best when 
children can already seriate, to some degree, before the training.

Our experiment makes a unique contribution in showing that 
children can spontaneously discover and use efficient sorting algo-
rithms, without receiving guidance or observing demonstrations of 
these sorting algorithms. Here we use the term ‘discovery’ to refer to 
children’s spontaneous, self-guided generation of structured strate-
gies in the absence of explicit instruction. However, children’s learning 
of algorithms needs to be incentivized by particular circumstances. 
For instance, our sorting task adds cognitive demands that require 
children to have a conceptual understanding of the task by removing 
visual access to the ranks of objects. This characteristic might motivate 
children to use more structured sorting behaviours that reduce cogni-
tive demands and thus promote the discovery of algorithmic sorting 
solutions. Since seriation is a fundamental building block for many 
early math abilities and seriation performance is predictive of the 
development of future math skills, our work has important implications 
for educational interventions that aim to promote young children’s 
math abilities.

Methods
Participants
All experiments were approved by the institutional review board of the 
University of California at Berkeley under IRB protocol 2018-12-11653: 
Learning, Attention, and Decision-Making Throughout Development. 
All participants gave informed consent. A convenience sample of 154 
children, ages four to nine, participated in this study in a museum, a lab 
or a classroom setting. We removed 31 participants from the analysis 
due to technical errors or failure to complete the experiment. The 
analysis was done on the remaining 123 participants (mean age, 7.21; 
s.d., 1.64). Table 1 shows the age group breakdown.

Experiment design
We designed a sorting game that children can play on a touch-screen 
computer. The game contains three practice trials and six test trials. 
Figure 1 shows our experimental design. In every trial, children see 
six animated bunnies. The bunnies have different heights, and the 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02302-6

objective is to sort them into the correct order, with the shortest 
bunny on the left and the tallest bunny on the right. In addition to  
having different heights, the bunnies all wear different coloured  
shoes. To prevent order effects, both the initial arrangement and 
the shoe pattern of the bunnies were randomly generated for each 
participant and each trial.

During each trial, children performed a sequence of comparisons 
until they were satisfied with the ordering. In each selection, they 
chose two bunnies, and the two selected bunnies performed a pair-
wise comparison. If the bunnies were out of relative rank order (that 
is, the leftmost selected bunny was taller than the rightmost selected 
bunny), they changed places, resulting in a swap, as shown in Fig. 1c. If 
the selected bunnies were already in the right relative order, as shown 
in Fig. 1b, with the shorter one on the left and the taller one on the 
right, then their positions did not change, resulting in a non-swap. 
The number of comparisons used on a given trial is the sum of swaps 
and non-swaps.

We used six-item arrays to strike a balance between complexity 
and feasibility. This format introduces enough of a challenge to engage 
children’s reasoning, while remaining manageable in our sequential 
comparison paradigm where item heights are not visible and must be 
inferred through interaction.

Analysis
For all regression analyses, we report effect sizes appropriate to the 
model type. Specifically, for logistic regression models, we report log 
odds ratios as the effect sizes, reflecting the change in the log odds of 
the outcome per unit increase in the predictor. For linear regression 
models, we report unstandardized β coefficients to facilitate intuitive 
interpretation of the magnitude and direction of effects.

Procedure
In the first practice trial, children could see the bunnies, as shown in 
the first panel in Fig. 1a. They advanced to the next practice trial only 
after they successfully put the bunnies in the right order. However, 
children received no instructions on which bunnies they should select 
to achieve the goal. In the second practice trial, depicted in the second 
panel in Fig. 1a, children could see the bunnies standing behind a grey 
glass window. They could see the different coloured shoes fully, but 
they could not see the heights of the bunnies clearly. The purpose of 
these two practice trials was to familiarize children with the demand 
and the goal of a sorting task. The second practice trial also prepared 
them for the following trials, in which they could not see the heights 
of the bunnies at all. In the final practice trial and all the test trials, 
as shown in the remaining panels in Fig. 1a, children were not able to 
see the bunnies’ different heights. They were told that these bunnies 
were standing behind a grey curtain and that they could only see the 
bunnies’ shoes. At the end of each trial, children verbally signalled to 
the experimenter when they thought the bunnies were in the right 
order, and they received a summary of whether the bunnies were 
in the correct final order and the number of comparisons they had 
performed in the trial.

There were two main reasons for allowing children to verbally 
signal the experimenter to end a trial, rather than using an automated 
system that would terminate the trial once the bunnies were correctly 
sorted. First, we wanted children to feel free to end a trial whenever they 
felt it was appropriate—even if the bunnies were not yet in the correct 
order—and to avoid pressuring them to continue making comparisons 
simply because the program had not yet signalled completion. Sec-
ond, we aimed to encourage children to reflect on their own sorting 
behaviour, including their decisions about when to stop. This approach 
allowed us to observe whether children would continue applying a 
correct sorting algorithm—even after the bunnies appeared to be 
sorted—demonstrating an understanding that the algorithm ensures 
the correct final order regardless of the initial configuration.

Exclusion criteria
An exclusion criterion was applied to remove trials in which children 
either appeared to exert insufficient effort to solve the task or used 
an unusually high number of comparisons relative to their peers. The 
principle underlying this exclusion was established prior to data col-
lection, while the specific numerical threshold was determined on the 
basis of the observed data.

We excluded a trial if it contained fewer than five comparisons 
or more than three standard deviations from the mean number of 
comparisons (46). This exclusion criterion was chosen because the 
minimum reliable solution to a pairwise comparison sorting problem 
of six items requires ten comparisons, and we consider a trial invalid 
when the child participant did not use at least half of the necessary 
minimum number of comparisons. The mean length across all partici-
pants across all trials without exclusion is 15.82. The standard deviation 
of the length across all participants across all trials without exclusion 
is 10.29. The cut-off is 46 comparisons. After we applied this exclusion 
criterion, 71 trials were excluded, and 667 trials (90.38%) were kept for 
all the following analyses.

Chance accuracy
We conducted an exploratory analysis to assess the reliability of our 
results on performance accuracy and to ensure that the observed 
accuracies were not simply due to children randomly selecting pairs 
of bunnies for each comparison. We calculated a baseline chance accu-
racy for all participants as the probability that a participant performs 
correctly on a trial by randomly selecting two bunnies in every com-
parison. Chance accuracy is calculated by using a permutation test: 
for every valid trial, given the initial positions of the bunnies and the 
number of comparisons performed by the participant during this 
trial, we calculated the chance of a participant achieving a correct final 
ordering when they perform every comparison by randomly selecting 
two bunnies. The chance accuracy of 1,000 permutations per trial is 
19.93%. This means that, on average, if participants were selecting pairs 
of bunnies randomly, their accuracy should be 19.93%. Given that the 
average percentage accuracy for all participants is 38.68%, higher than 
the chance accuracy, we show that participants were not randomly 
selecting pairs of bunnies.

Efficiency
We denote efficiency as the number of comparisons (swap and 
non-swap) that a participant performed in a trial.

Algorithm identification
We selected two identifiable and efficient sorting algorithms: selection 
sort and shaker sort. We used a pattern-matching analysis method to 
identify whether a trial used one, both or neither of these two algorithms.

The selection sort algorithm sorts an array by repeatedly selecting 
the smallest (or largest) element from the unsorted portion. The pat-
tern we used to identify the use of selection sort is a five-comparison 
pattern involving the participant establishing either the smallest ele-
ment or the largest element of the list by repeatedly comparing the 
leftmost or the rightmost bunny with all other bunnies. A trial was 
categorized as using selection sort if the participant’s comparison 
sequence for a trial contained this pattern. To allow for partial or imper-
fect implementations, especially among younger children, we chose a 
five-comparison threshold for detecting each algorithm. This thresh-
old captures structured patterns that are unlikely to arise by chance, 
without requiring a full execution of the algorithm. While stricter or 
more lenient criteria could affect classification rates, especially devel-
opmentally, we opted for a balanced approach to enable meaningful 
yet flexible detection of strategy use.

The shaker sort algorithm sorts an array by selecting two con-
secutive elements at a time and moving the selection from left to right 
and then from right to left until the participant arrives at the correct 
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ordering. The pattern we used to identify the use of shaker sort is 
a five-comparison pattern involving the participant selecting two 
adjacent bunnies either from left to right or from right to left. A trial 
was categorized as using selection sort if the participant’s comparison 
sequence for a trial contained this pattern.

Note that a trial can be categorized as using both of these two 
sorting algorithms. Our analysis focused on two algorithms with clear 
and compact behavioural signatures that are detectable in short tri-
als. Other algorithms, such as gnome sort, may be more difficult to 
distinguish reliably in child behaviour due to shorter sequences and 
more variable implementation, and were therefore not included in this 
initial classification scheme.

Our pattern-matching analysis results are shown in Table 2. They 
show that 34.48% of trials and 54.47% of participants used at least one 
of these sorting algorithms. Our results also show that, in general, par-
ticipants used shaker sort more frequently than selection sort. We also 
show that a significant percentage of participants can use both sorting 
algorithms, providing supportive evidence for the variety of strategies 
that children could employ to solve the sorting task.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data from all experiments are available at https://osf.io/sepzw/.

Code availability
The code for the analyses is available at https://osf.io/sepzw/.
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