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Abstract

Even before birth, infants attend to the statistical properties
of their sensory environments to learn about events in world.
Tracking these statistics is crucial to mastery of visual, social,
linguistic, and cognitive tasks. However, the degree to which
their sampling follows prescriptions of rational statistical infer-
ence is unclear. Do infants’ attentional preferences reflect ef-
ficient information gathering? We investigated using an ideal
observer model (a Markov Dirichlet-multinomial). We pre-
dicted infants’ attention to sequential events would be moder-
ated by information content. We tested infants (7-8 months)
with 32 unique event sequences (objects popping out of boxes)
on a Tobii eye-tracker. Each sequence continued until look-
away. Controlling for other variables, we found infants were
significantly more likely to look away at either highly informa-
tive or uninformative events according to the model. This sug-
gests infants allocate visual attention to maintain intermediate
rates of information processing, avoiding committing cogni-
tive resources to either overly predictable or surprising events.
This “Goldilocks effect” may reflect a general strategy for ef-
ficient learning from environmental statistics.

Keywords: Statistical learning; statistical inference; ideal-
ized learner; infant gaze behavior; infant methods; infant eye-
tracking; Bayesian modeling; information theory; infant visual
attention.

Introduction

Infants have a lot to learn in the first few years of life, and
a limited set of resources with which to do it. The world is
brimming with potential sources of information, but where
among this spatiotemporal array of events should infants be-
gin their learning? From birth, infants survey their sensory
environments, sampling the visual data that surrounds them
at the incredibly rapid pace of two or more fixations a second
during 90% of their waking hours (Haith, 1980). This pro-
cess, of surveying and sampling, provides infants with rich in-
formation from which they can start to learn about the world.

Previous empirical work has demonstrated that infants are
able use the statistical properties of their environment in a di-
verse array of learning tasks pertaining to sounds, words, peo-
ple, shapes, and objects (Fiser & Aslin, 2002; Maye, Weiss,
& Aslin, 2008; Saffran, Aslin, & Newport, 1996; Saffran,
Johnson, Aslin, & Newport, 1999; Yu & Ballard, 2007)'.
In many complex cognitive systems (e.g., object recognition,

I'The literature detailing these statistical learning abilities is so
large, in fact, that if it were printed and stacked in a pile, it would
be more than 140 infants tall (based on 161,000 unique articles cat-
aloged by Google Scholar at time of publication and 26-inch mean
height of 8-month-olds).

language), infants obtain the representations of higher-level
structures by tracking the low-level statistical coocurrences.
For example, newborn infants must track the distribution of
acoustical properties of speech sounds in their target lan-
guage in order to infer its phonological categories (White,
Peperkamp, Kirk, & Morgan, 2008). Researchers of visual,
conceptual, and social learning find similar patterns. Recent
technologies (e.g. eye-tracking, brain imaging techniques)
have elucidated many of the mechanisms infants employ in
building high-level structures from low-level environmental
statistics. Though the topic has been of great interest to re-
searchers, the mechanisms and representations infants em-
ploy during the process of collecting environmental statistics
are still not well understood.

Amid the unbinned and unsorted masses of sensory data
available in the world, an undirected search would be ineffi-
cient. Infants have too many things to do—motor actions to
program, words to learn, categories to form—to waste time.
How then should the infant allocate her visual attention?

Several researchers attempted to unify this work by iden-
tifying an overarching stimulus feature that could generally
account for all of infants’ preferences for various stimulus
properties. Sokolov (1960) postulated that the primary driver
of infants’ attention is stimulus novelty. Consistent with this
theory, infants commonly prefer the novel stimuli in prefer-
ential looking/listening tasks such as those use in the Fantz
paradigm (Fantz, 1964), high-amplitude sucking procedure
(Siqueland & DeLucia, 1969), and head-turn preference pro-
cedure (Kemler Nelson et al., 1995) . The novelty account
is also consistent with habituation behavior, during which
infants’ attention to recurring stimuli decreases over time.
However, the novelty hypothesis does not account for infants’
familiarity preferences in many preferential looking and lis-
tening studies. Notable examples include infants’ affinity for
their native languages and for faces, especially those of their
mothers.

Roder and others attempted to reconcile infants’ preference
patterns by relating preference and processing load (Hunter
& Ames, 1988; Roder, Bushnell, & Sasseville, 2000; Wag-
ner & Sakovits, 1986). Roder suggested that the process of
memory formation was responsible for preference. Under
this theory, infants would be expected to exhibit a familiar-
ity preference early in processing as they form a memory of
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the stimulus, and a novelty preference later after memory for-
mation was complete. While this account correctly predict
age and experience-related shifts in visual preference, it does
not on its own account for all types of visual preferences.
It does not, for example, make clear predictions of why in-
fants would prefer one novel object to another entirely novel
object, since infants would not possess a memory for either
item. Kinney and Kagan similarly suggested a processing-
based account of preference. Their moderate discrepency hy-
pothesis states that infants will preferentially attend to stimuli
that are “optimally discrepant”, meaning those that are most
distinct from the representations they already possess. Like
Roder’s memory-based account, Kinney and Kagan’s theory
relates stimulus preferences to stimulus representations es-
tablished by past experiences (Kinney & Kagan, 1976). The
moderate discrepancy hypothesis has the added advantage of
accounting for preferences among completely novel stimuli,
since it defines the representation formation process as per-
taining to the infants’ existing representations. Unfortunately,
attempts to test this theory behaviorally were hindered by
methodological difficulties. First, researchers had no direct
access for determining the type, quantity, and nature of in-
fants existing representations, which are crucial to the theory
for generating testable predictions. Second, manipulating the
identity of stimulus items to test for visual preferences forced
researchers to rely on qualitative judgments of discrepancy
rather than a quantitative metric.

Yet another account, Dember and Earl’s theory of
choice/preference, suggests that stimulus complexity drives
looking behavior. Dember and Earl posited that every stim-
ulus contains a certain “complexity value, and that each in-
dividual® has a certain preferred complexity level it seeks
to maintain (Dember & Earl, 1957). In this context, com-
plexity can be thought of as information content. The the-
ory predicts that individuals will seek out stimuli containing
the ideal level of complexity with respect to their own pre-
ferred complexity rates. The amount of information an indi-
vidual will derive from a stimulus decreases as experience
accumulates. Thus, like other processing-based accounts,
this complexity-driven one can theoretically predict age and
experience-related shifts in visual preference. Berlyne noted
that a complexity-driven preference would be an optimal
strategy for learning (Berlyne, 1960). It provides a rational
solution to the infant learner’s problem of deciding where best
to allocate attention in the world. As with the attempts to test
memory-based theories of attention, the collection of empiri-
cal evidence for this theory was hindered by the use of stimuli
varied along qualitative dimensions rather than quantitative
metric.

All prior models of infant visual attention, using the stan-
dard 2-second look-away criterion, have been based on hypo-
thetical underlying processes such as information complexity,
processing speed, and stimulus salience. Unfortunately, none

2Individuals referred to not only baby humans, but also adults
and animals

of these underlying processes were validated by an indepen-
dent assessment. As a result, the precise way in which these
processes were combined could not be estimated, except by
observing the outcome of their integrated effect on gaze dura-
tions. Here we seek to provide a quantitative model of visual
attention to sequential events by systematically manipulating
information complexity while holding processing speed and
stimulus salience constant.

We used an idealized statistical model—a Dirichlet-
Multinomial Markov model—to predict infant looking be-
havior to a display of sequential events. Our results suggest
that infants’ behavioral responses to a stimulus are influenced
by its information content. Further, we find evidence that in-
fants allocate their attention to maintain a certain information
rate under a statistical model of the world. We present this
as evidence that infants use rational statistical inference in
understanding the world and deciding where to allocate at-
tention and other cognitive resources.

Infant Behavioral Data
Participants

Twenty-five infants (mean = 7.9 months, range = 7.0 - 8.8)
were tested. All infants were born full-term and had no
known health conditions, hearing loss, or visual deficits, ac-
cording to parental report. All participating infants completed
the study.

Stimuli

We presented each infant with 32 unique event sequences,
with the order of the sequences randomized across in-
fants. The events each sequence consisted of were three
unique objects that were animated to pop out from be-
hind three occluding surfaces, which simulated an array of
boxes. The sequences of object “pop ups” were chosen to
vary in their information-theoretic properties (e.g., entropy,
surprisal). Thus, some sequences were highly predictable
(e.g., AAAAAAAA), and others were less predictable (e.g.,
CAAABBCABAC).

For each infant, the Matlab script generated an animated
scene based on each of the 32 event sequences. Each event
sequence was implemented by creating a scene consisting of
three uniquely patterned and colored boxes, each concealing
a unique familiar object (e.g., a cookie). The locations of the
three boxes for a given sequence were chosen randomly but
remained static throughout a scene. The box locations were
randomly shuffled between event sequences, but no more than
two boxes appeared on either half of the screen. Neither the
patterns on the boxes nor the objects were repeated across
event sequences so that each object-box pair was independent
and unique.

The objects, boxes, and the order in which the 32 event se-
quences were presented were randomized across infants. The
same 32 event sequences were presented to every infant. This
design ensured that differences in looking time across event
sequences were not driven by differences in scene items or
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presentation order. Each event in a sequence consisted of an
object that popped out of a box (1 s), and then back into the
box (1 s). The total duration of each event was 2 s, and events
were presented sequentially with no overlap or delay.

Procedure

Each infant was seated on his or her parent’s lap in front
of a table-mounted Tobii 1750 eye-tracker. The infant was
positioned such that his or her eyes were approximately 23
inches from the monitor, the recommended distance for accu-
rate eye-tracking. At this viewing distance, the 17-inch LCD
screen subtended 24 X 32 degrees of visual angle. Each of the
3 boxes was 2 X 2 inches. To prevent parental influence on the
infant’s behavior, the parent holding the infant was asked to
wear headphones playing music, lower their eyes, and abstain
from interacting with their infant throughout the experiment.

The experiment consisted of 32 trials, one for each event
sequence. Each trial was preceded by an animation designed
to attract the infant’s attention to the center of the screen—
a laughing and cooing baby. Once the infant looked at
the attention-getter, an experimenter who was observing re-
motely pushed a button to start the trial.

For each trial, an animated scene depicting one of the event
sequences was played. The animated sequence of events—
objects popping out of boxes one at a time—continued until
the infant looked away continuously for 1 sec, or until the se-
quence timed out at 60 sec. The 1-sec look-away criterion
for trial termination was automatically determined by the To-
bii eye-tracking software. If the infant looked continuously
for the entire 60-sec sequence, the trial was automatically la-
beled as a “time out” and discarded before the analysis (3.5%
of trials). If the trial was terminated before the infant actu-
ally looked away, the trial was labeled by an experimenter as
a “false stop” and also discarded. False stops occurred as a
result of the Tobii software being unable to detect the child’s
eyes continuously for 1 sec, usually due to the infant inad-
vertently blocking the his or her own eyes with head or arm
movements (18.5% of trials).

Every infant saw all 32 event-sequence trials. The de-
pendent measure for the subsequent computational modeling
was the event at which the infant looked away in each trial;
that is, at what point in the sequence did infants look away
from the display for more than 1 consecutive second? We
predicted that infants were more likely to look away during
events that contained either too little or too much information
for a particular infants’ preferred information-intake rate. We
predicted infants would be least likely to look away during
events that were “just right”—those that were neither too pre-
dictable, nor too surprising. Our Ideal Observer Model was
used to determine the amount of information for each event
in the event sequences (i.e., which event contained more or
less information). If infants’ attention to a stimulus is gov-
erned by the amount of information it contains, we would
expect infants’ look-aways to be predictable given the model.
We tested our hypothesis by comparing the model’s predicted
probabilities of an infant looking away for each event in the

sequence to the infants’ actual look-aways in test.

Ideal Observer Model

We used a Markov Dirichlet-multinomial model (MDM) to
evaluate the relationship between the statistical properties of
the event sequences and infants’ attention to events in that se-
quence. The model allows us to test the best-fitting set of pa-
rameters for predicting from the event sequence whether the
infant will continue looking or terminate a trial by looking
away from the display. The MDM is a general-purpose sta-
tistical model that infers an underlying (multinomial) proba-
bility distribution on events, using the history of how many
times each event has been observed. The MDM makes para-
metric assumptions about the form of the prior probability of
an event and the likelihood of the event, and is often used in
Bayesian statistics because it is computationally simple. In-
tuitively, infants observe how many times each event in the
world occurs, and then use these event counts to infer an un-
derlying probability distribution on events, just as readers ex-
tract an underlying word frequency distribution using a set of
observations of individual words. An observer who sees only
a single event happen would not likely infer that that single
event is the only possible event (e.g, has probability 1.0). In-
stead, observers likely bring expectations to the task. In the
version of a MDM used here, this prior expectation is pa-
rameterized by a single free parameter, o0 which controls the
prior degree of belief that the distribution of events is uniform
(e.g., that all unobserved events are equally likely). As o gets
larger, the model has stronger prior beliefs that the distribu-
tion of events in the world is uniform; as o — 0, the model
believes more strongly that the distribution is closer to empir-
ically observed counts on events.

Formally, if there are three events, A, B, and C, which have
been observed to occur cy4, cp, and cc times respectively, then
the model assigns probability to a distribution on these three
events proportional to

P(A)CA+alpl1a—lP(B)CB—‘ralpha—lP(C)Cc+alpha—l , (1)

where P is a hypothesized distribution on the events A, B, and
C. That is, after observing each event occur some number of
times, the infant may form a representation P, which gives the
true underlying distribution of events. Every distribution can
be “scored” according to Equation 1, allowing one to compute
a distribution of beliefs about the state of the world according
to the model. This simple model allows us to quantify an
ideal observer’s degree of belief that any given distribution on
events is the true one. Importantly, because of the parametric
form of the MDM, statistical measures such as the most likely
true distribution of events, can be computed analytically.

We used two different forms of the MDM. In the first,
the events A, B, and C correspond to events in the behav-
ioral experiment (objects appearing from behind the occlud-
ing boxes). This model does not represent the transitions be-
tween events in the world; that is, the sequence AAABBBCCC
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would have the same expectation as ABCABCABC. In the
second model, we treated the events A, B, and C as transitions
(or bigrams): for each object, we created a separate MDM for
events that happen next. This model represents three separate
MDMs that capture the transitions between events.

Both of these forms of the MDM provide an estimate of
what an ideal observer would infer about the structure of the
world. However, a model of infant’s beliefs alone is not suf-
ficient to predict their behavior: what is needed additionally
is a set of linking assumptions that relate beliefs to actions.
Here, we assume that the infant’s looking behavior is at least
partially determined by the information-theoretic properties
of the model. Specifically, we test whether the predictabil-
ity of a stimulus according to an idealized learning model
influences infants’ looking behavior. Formally, we use the
negative log probability of the current event according to the
model, conditioned on observing all the previous events. As
this negative log probability increases, the current event is
more surprising: for instance, after seeing a long sequence
of As, a B would have a high negative log probability. Neg-
ative log probability is a convenient measure because it cor-
responds to the number of bits of information conveyed by
the stimulus. Thus, negative log probability provides a mea-
surement at each point in time of the unpredictability of an
event, using a measure that is typically used as a measure
of information content. Because of the form of the MDM,
the model roughly predicts that events in the future will tend
to occur with their already-observed probability. However,
the model essentially adds a small amount of smoothing—
parameterized by alpha—that prevents unseen events from
having probability zero.

Results & Analysis

At each event in a sequence, infants make an implicit deci-
sion to either look away or keep looking at the scene. Figure
1 shows their raw probability of looking away at each item, as
a function of that item’s negative log probability according to
the model, and collapsing across infants and sequences. The
blue line shows the results for the non-transitional model, and
the red line shows results for the transitional model. Both
show a U-shaped relationship between raw look-away prob-
ability and model-based estimate of surprisal, with infants
looking away to events that are especially surprising or espe-
cially predictable. There is a “Goldilocks” value of surprisal
around 1.5, corresponding to infants’ preferred rate of infor-
mation in this task® which corresponds roughly to the point
in the graph where infants have the lowest raw probability of
looking away.

Survival analysis

Although the MDMs in Figure 1 provide a revealing picture
of the relationship between indexes of surprisal and looking
durations, there are likely other factors that influence infant

3This information rate must be interpreted relative to the fre-
quency with which events in the sequence are presented, one every
2 seconds
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Figure 1: Infant look-away probabilities as a function of non-
transitional surprisal (top) and transitional surprisal (bottom).

look-aways. For instance, it might be the case that events
in sequences generally become higher probability as infants
form a picture of the statistical properties of the stimulus. If
infants generally looked for a fixed amount of time, rather
than paying attention to the statistical properties of the stim-
ulus, then generally increasing predictability could make it
look as though they preferred a certain information rate. To
address this, we performed a regression analysis to control for
the influence of other factors on look-away probability.
When infants look away, their trial ends and they provide
no more additional data for that sequence *. This means that
there is only a data point for an infant at time ¢ if they have
not looked away before . We used a type of regression that
respects this statistical relationship between look-aways and
future data called a survival analysis. The type of survival
analysis we used, Cox regression, measures the log linear in-
fluence that predictors have on the probability of a look-away
at each point in time, but controls for a baseline look-away
distribution. In the variety of survivial analysis we used, the
baseline looking distribution is fit nonparametrically to the
data, meaning that the analysis conservatively removes the

4In the statistical literature, this type of data is called censored.
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influence of an “average” distribution of looking times, be-
fore testing the significance of predictors.

We used a stepwise procedure for the Cox regression that
tested whether each of several variables improved the model
fit (AIC). Thus, at each iteration, the regression only added
variables if they contributed positively, and at the same time
removed variables if they contributed negatively. We included
the following predictors in the survival analysis as control co-
variates.

e TRIAL-NUMBER: The number of sequences the child has
already observed

o FIRST-APPEARANCE: A boolean factor corresponding to
whether this event is the first time an object has been ob-
served.

e UNSEEN-ITEMS: The number of objects that have not yet
been observed.

e SAME-EVENT : A boolean factor for whether or not the
current event is the same as the one that just happened.

The primary predictors we included in the survival analy-
sis is the negative log probability of the event according to
the MDM. Table 1 revealed that this variable is likely related
to look-away probability quadratically, so we also included
the squared negative log probability of the event according to
the model’. A significant effect of squared predictability tests
the significance of the U-shaped effect observed in Figure 1.
As discussed above, we formed both transitional and non-
transitional versions of the model, corresponding to models
that treat each event independently, or each transition inde-
pendently. Because the predictions of these two models are
highly-correlated, we performed separate analyses on each.

Figure 2 shows the results of the survival analysis, includ-
ing all predictors that were added via the stepwise procedure.
These results can be interpreted by multiplying each coeffi-
cient by the value of the covariate and then exponentiating.
This number represents an amount by which the probability
of looking away is scaled, according to the best-fitting model.
For instance, the coeffient of TRIAL-NUMBER is 0.033, mean-
ing that by the 10’th sequence the child sees, they have a
exp(10%0.033) = 1.39 greater factor of looking away. This
effect of TRIAL-NUMBER is a plausible effect of fatigue. The
results also show a significant effect of SAME-EVENT: chil-
dren are a factor of exp(0.316) = 1.37 more likely to look
away when the event is a repeat of the most recent event.
This effect is also plausible: infants search for other things to
keep their interest when the experiment shows a repeating—
and therefore boring—event.

The regression results also reveal significant effects of
NEG-LOG-PROB-SQUARED. Because these variables were
standardized, the outcome can be interpreted as the response

SCovariates were standardized before including them in the anal-
ysis and before squaring them.

to changing the negative log probability by one standard devi-
ation from those seen throughout the entire experiment. If the
negative log probability of the event changes by one standard
deviation, the probability of looking away changes by a fac-
tor of exp(0.099) = 1.10 for the non-transitional model and
exp(0.194) = 1.21 for the transitional model. That is, infants
are a factor of 1.1 to 1.21 more likely to look away on events
that are either highly surprising or highly non-surpising ac-
cording to an idealized statistical model for learning the struc-
ture of the sequences they observe.

The predictions of the the transitional and non-transitions
models are difficult to distinguish because they are closely re-
lated: the information content of both models are correlated
at R =0.62 (p < 0.001). However, if both are entered into
a stepwise Cox regression, the transitional NEG-LOG-PROB-
SQUARED is significant at p < 0.001 (coef=0.25, z = 5.74)6,
while the non-transitional information content is not signif-
icant p > 0.1. This provides strong evidence that infants
track transitional probabilities, but the null result for the non-
transitional model is difficult to interpret due to its correlation
with the transitional model and the noise inherent in infant
data.

Conclusions & Discussion

These results have explicitly tested two interrelated hypothe-
ses related to infants’ looking behavior. First, we con-
structed a rational, statistical model that used observed events
or transitions between events to form probabilistic expecta-
tions about what events are most likely in the future. This
model embodies a simple, but non-trivial learning theory un-
der which infants follow at least approximately rational sta-
tistical inference in inferring properties of the world. Second,
we used this model to test whether infants have a preferred
information rate in deciding where to allocate attention. The
model was necessary in determining what information con-
tent a stimulus should convey, to an idealized observer. A
failure of either theses assumptions—the probabilistic model
or the linking assumption of the relevance of information
content—would have yielded a null result.

In our analysis, we we used a Cox regression survival anal-
ysis, which allowed us to test the predictions of the model
controlling for potential confounds such as the number of
items that have not appeared yet, item repeats, and an arbi-
trary baseline distribution of look-away probabilities. To our
knowledge, the hypothesis that infants prefer a fixed informa-
tion rate has not been tested controlling for these other vari-
ables; nor has previous work used this type of formal model in
measuring information rate. As such, this work provides sev-
eral methodological advances. Rather than predicting infants’
average looking time to a stimulus, our analysis attempted to
predict the precise item in a sequence that an infant would
look away on. We found that the information-theoretic prop-
erties of a formal model were a significant predictor of infant

%The Variance Inflation Factors are small for these variables
(< 3.1), suggesting that collinearity is not a substantial problem in
computing statistical significance.
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Non-transitional model

Variable Coef. Std. Error p-value
TRIAL-NUMBER 0.033  0.006 5.867  0.000
SAME-EVENT 0.213  0.100 2.140 0.032
NEG-LOG-PROB-SQUARED 0.099  0.049 2.024  0.043
Transitional model
Variable Coef. Std. Error z p-value
TRIAL-NUMBER 0.033  0.006 5.791  0.000
SAME-EVENT 0316 0.114 2.772  0.006
NEG-LOG-PROB-SQUARED 0.194  0.047 4.134  0.000
UNSEEN-ITEMS -0.175 0.089 -1.959 0.005

Figure 2: Included variables using a stepwise Cox regression analysis to predict infant look-aways. In predictions of both
transitional and non-transitional models, the squared (standardized) negative log probability is a significant predictor of look-

aways.

look-aways, over and above the effects of other variables, but
that their effect was U-shaped. Thus, the Cox regression vali-
dates the trend observed in Figure 1, showing that it does not
result from other confounds.

We take these results as strong evidence for the theory that
infants are the Goldilocks of the “blooming, buzzing confu-
sion,” preferring stimuli with a certain moderate level of in-
formation, and are at least approximately rational in their de-
cisions about where to allocate attention.
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