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We present evidence that pressures for early childcare may have
been one of the driving factors of human evolution. We show
through an evolutionary model that runaway selection for high
intelligence may occur when (i) altricial neonates require intelli-
gent parents, (ii) intelligent parents must have large brains, and
(iii) large brains necessitate having even more altricial offspring.
We test a prediction of this account by showing across primate
genera that the helplessness of infants is a particularly strong pre-
dictor of the adults’ intelligence. We discuss related implications,
including this account’s ability to explain why human-level intelli-
gence evolved specifically in mammals. This theory complements
prior hypotheses that link human intelligence to social reasoning
and reproductive pressures and explains how human intelligence
may have become so distinctive compared with our closest evolu-
tionary relatives.

cognitive science | evolutionary dynamics | developmental modeling

The breadth and power of human cognition is qualitatively unlike
that of even our closest evolutionary relatives. Although our

mental abilities clearly aid survival and reproduction, our cognitive
capacity also appears to go far beyond what is minimally required to
live and reproduce, permitting us to engage in a remarkable breadth
of cognitive and technical endeavors. The question of why human
intelligence and brain size exhibits a drastic change over recent
evolutionary history has not yet been resolved.
Numerous authors have theorized about possible factors that

may have given rise to humans’ powerful cognitive systems.
These theorized factors include social learning and interaction
(1–10), diet (11–13), relational/analogical abilities (14), language
(15, 16), the rise of female food gathering (17), hunting (18, 19),
a constellation of traits leading to improved causal reasoning
(20), and general elaboration of abilities found in primates (21,
22). Although these theories often make testable predictions
about the relationship between brain size and other factors, they
have not yet explained why human intelligence so far exceeds
that of other primates. They also do not explain why intelligence
took so long to evolve in the history of life, nor do they provide
mechanistic accounts of how proposed factors could concretely
lead to the enormous increase in brain size and intelligence seen
through hominid evolution (23, 24).
Here we show that extreme intelligence could have arisen

through a positive evolutionary feedback loop: Humans must be
born unusually early to accommodate larger brains, but this gives
rise to particularly helpless neonates. Caring for these children,
in turn, requires more intelligence—thus even larger brains. In
this situation, brain size may be linked between parents and
children in an unusual way. Increased brain size may help adults
care for altricial neonates, yet also make such neonates less likely
to survive childbirth due to physical constraints. We develop a
formal model of this situation and show that it may result in self-
reinforcing dynamics, eventually creating species that are much
more intelligent than others. Populations can be pulled into a
region of evolutionary phase space in which children come to be
born even earlier and parents must have even bigger brains to care
for them, similar to runaway dynamics observed in sexual selection.
After developing the model as a proof of principle for the

dynamics of our account, we test its most basic assumption:
Primate intelligence should be strongly dependent on pressures of

childcare. As we show, weaning time—a measure of the helplessness
of newborns—is a strong predictor of primate intelligence, over and
above a variety of other measures. We conclude by discussing several
other pieces of evidence in support of our account. In particular, the
theory explains why human-level intelligence occurred in mammals
and not in other lineages that had millions of years more time to
evolve highly intelligent species. Under our account, the requisite
dynamics only become possible through linking large brains and live
birth, characteristic features of higher mammals.

The Evolutionary Model
The model presented here is meant to provide a demonstration
that runaway selection for unusually large brains and high in-
telligence can occur from nothing more than the demands of
caring for children who must be born early to accommodate their
own large brains and who must have large brains to care for their
own children. Our formalization is meant to illustrate the key
mechanisms that may have been at play but necessarily simplifies
a complex evolutionary history. As such, the model is in line with
other work in biology aimed at capturing large-scale properties
and dynamics from general principles (25–27).
The model contains three parameters that are assumed to be

subject to selective pressures: an adult head/brain size R, a birth
age T (i.e., period of intrauterine development), and a quanti-
fication of an individual’s intelligence I. These variables are as-
sumed to relate to survival in the way described above: Large
brains R require earlier birth ages T but are also associated with
higher I. Because the true form of many of these linkages is not
known, we focus on providing an existence proof that plausible
assumptions can give rise to a fitness landscape mode favoring
altricial newborns and highly intelligent parents.

Model Implementation Assumptions. First, we assume a Gompertz
growth curve—a standard in embryo development (28)—characterizes
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children’s head radius throughout gestation and neonatal
development:

gðx,RÞ=Re−b·e
−c· x
, [1]

where x is the age and R is the adult (limiting) head size. There
are two parameters here, b and c, controlling the y displacement
at x= 0 and the growth rate, respectively. We fit b= 37.1 and
c= 0.42 to head growth data from newborns from the World
Health Organization (Materials and Methods).
Second, we assume that a characteristic size V constrains ne-

onates’ head size at birth. Children who are born with a head size
larger than V will be assumed to be relatively unlikely to survive
birth, matching the observation that our brains come with the
cost of complex and dangerous childbirth (29–31), as well as the
commonality of deaths due to cephalopelvic disproportion in
humans and other primates (32–35). The shift to large infants
has been argued to have occurred early in human evolution, with
Australopithecus carrying neonates with nearly the same pro-
portion of their body mass as modern humans, potentially an
important driver of the development of alloparenting (36). In the
model, if children are born at time T postconception, they will
have a head size of gðT,RÞ via Eq. 1. We assume that the
probability of surviving childbirth falls off sigmoidally once this
size exceeds the fixed bound V:

Pðsurvive  childbirth  j  T,RÞ=ϕðV − gðT,RÞÞ, [2]

where ϕ is a standard logistic curve [ϕðzÞ= 1=ð1+ e−zÞ]. In gen-
eral, one might consider the V to be subject to selective pressures.
However, two prior accounts have critically argued for absolute
physical constraints on children’s size at birth. Under one theory,
our ancestors faced a pressure for bipedalism (which constrained
pelvis size) and also large brains (which pressured increasing
pelvis size), resulting in the so-called “obstetric dilemma” (29,
31, 37, 38). Humans may have solved this dilemma by having
young and incapable neonates and decreasing gestation time
because pelvis size could not increase further. Alternatively,
the metabolic costs of gestation may have constrained the max-
imum size child that mothers could support (39). Either case
results in a maximum allowable size at birth. Consistent with
these theories, we here fix V = 5.48 cm, a typical head radius
for human newborns. Fig. S1 shows that the qualitative proper-
ties of the model do not depend strongly on the numerical value
of V.
After childbirth, children must survive to a reproductive age.

Under the theory, the probability of surviving should increase

with their parent’s intelligence, denoted Ip, but will depend on
the amount of time until the child reaches maturity. We make
the very simple assumption that children have a constant hazard
rate of death until their time of maturity. We assume that the
rate is inversely proportional to parental intelligence Ip, giving
rise to an exponential failure distribution,

P
�
survive  to  adulthood  j M, Ip

�
= e−Mðγ=IpÞ. [3]

Here γ is a free parameter capturing the rate of mortality, and M
is the amount of time it takes to reach maturity. Thus, doubling
intelligence will have the effect of halving the rate at which
deaths occur. Halving the time-till-maturity will give the newborn
half as much time to fail. We computed time-till-maturity M as
the time after birth at which Eq. 1 reaches 99% of R [i.e., as
x−T, where x solves gðx,RÞ= 0.99 ·R].
Finally, we assume that head size R and intelligence I are in-

herently linked (see Fig. S2). There are many forms this linkage
could take: intelligence could be a function of brain size, both
could be a function of a third inherited variable, or mutations could
tend to increase and decrease both together. While all three of
these can give rise to runaway selection, in our exploration, only the
latter appears to make it possible for time-to-maturity to correlate
better with intelligence than brain size does, a finding in our em-
pirical section below. We therefore focus here on the case where
mutations to R are highly (90%) correlated with mutations to I.
This assumption is plausible given evidence for overall enlargement
of the brain throughout mammalian evolution, rather than selec-
tion of particular subsystems (40–42), dynamics which have been
argued to occur from simple genetic mechanisms (21).
To visualize the assumed relationships between variables, Fig.

1 plots Eqs. 1–3 at r= 8.4, a typical adult head radius (solid), and
r= 4.2, a radius half as big (dotted). These show three simple
relationships. First, the smaller radius asymptotes at the smaller
value under the Gompertz growth function (Fig. 1A). Second,
birth survival at any birth age is increased for the smaller radius
but approaches 1 as the birth age (and thus head size at birth)
decreases (Fig. 1B). Third, smaller-brained species have a lower
chance of surviving childhood due to decreased intelligence (Fig.
1C), but survival for both decreases as time-till-maturity increases.
In the model, the probability of surviving until adulthood is the
product of Eqs. 2 and 3, treating the survival of birth and childhood
as statistically independent events, given T, R, and I.

Childcare Demands Can Yield Self-Reinforcing Dynamics. Fig. 2A
shows the probability of surviving to a reproductive age (i.e., Eq.
2 multiplied by Eq. 3) for values of children’s birth age T (x axis)

0 5 10 15 20 25

0
2

4
6

8
Child growth curve

Age (months)

H
ea

d 
ra

di
us

 R
 (

cm
)

0 5 10 15 20 25

0.
0

0.
4

0.
8

Birth survival curve

Birth age T (months)

P
(s

ur
vi

ve
 b

ir
th

)

0 5 10 15 20 25

0.
0

0.
4

0.
8

Childhood survival curve

Time until maturity M (months)

P
(s

ur
vi

ve
 c

hi
ld

ho
od

)

A B C

Fig. 1. The assumed relationships in Eqs. 1–3, relating (A) age to head radius, (B) age to birth survival, and (C) age to childhood survival at γ = 0.4. The solid
lines show the relationships for a typical adult human head r = 8.4 cm. The dotted lines show the curves for a head half as big.
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and head size R (y axis). To create Fig. 2A, we have assumed that
Ip, the parent’s intelligence, is equal to the child’s brain size at
the limit of growth. This approximation holds in populations in
which there are only small changes across generations.
The shape in Fig. 2A illustrates the key features of our ac-

count. First, the fitness landscape is relatively flat for late-born
species with small brains (lower right). However, if species are
born early enough and with large enough brains, a new avenue
opens of up having bigger brains and consequently earlier births,
as shown by the leg of high survival probability that goes to the
upper left. Critically, survival probability at the far edge of this
leg (big head size and low birth age) is higher than for more
moderate values of these variables, meaning that populations can
get pulled to the upper left simply by the dynamics of Eqs. 1–3.
The diagonal lean of this leg means that low birth ages and big
brains can exhibit self-reinforcing dynamics, in which big-brained
populations are pressured toward lower birth ages and pop-
ulations with lower birth ages are pressured toward bigger brains.
Fig. 2B shows the dynamics of the full evolutionary model.

Without this simulation, it is perhaps not intuitively clear that
runaway dynamics could realistically exist in the mixed evolu-
tionary situation in which larger brain size in the parent increases
survival in childhood, but larger brain size in the child decreases
survival during childbirth. In Fig. 2B, a population size of
N = 1,000 is simulated for 100 generations from a variety of
starting locations (circles). In the model, random parents are
chosen from the population; their respective T, R, and I values
are averaged; and they produce a child whose T, R, and I values
are subject to Gaussian additive noise (mutations) with an SD of
1.0. If the child survives birth (via Eq. 2) and childhood (via Eq.
3), the child replaces a random member of the population. The
population trajectory depends strongly on the starting position:
Only sufficiently early-born big-brained species will be pulled to
the upper left region in a self-reinforcing cycle. This demon-
strates that the dynamics of Eqs. 2 and 3 can give rise to species
with unusual levels of intelligence and neonate altriciality. Crit-
ically, the model shows that this is possible even when no forces
other than childbirth and childcare are present. We note that as
should be expected, the fitness landscape and corresponding
dynamics are sensitive to the parameters.

Altriciality and Intelligence in Primates
The basic ecological prediction of the model is that species
should exist only in the high-survival regions of Fig. 2A. Species
with well-developed neonates can have a variety of brain sizes,
but as altriciality increases, species must have large brains and
high intelligence. To test for this trend of increasing intelligence
with greater altriciality, we combined data on weaning times (43)
as a proxy for altriciality, with a measure of general intelligence
from a Bayesian metaanalysis of primate cognition tasks (44) and
brain size measures (45) (Materials and Methods).

Altriciality Covaries with Intelligence Across Genera. Fig. 3 shows the
correlation between weaning age and intelligence across the pri-
mate species for which these species were available. The correlation
is statistically significant (Kendall’s τ= 0.62, p< 0.001). We note
that the model above also qualitatively captures this relationship. In
the simulation used for Fig. 2 (Materials and Methods), the weaning
times were highly correlated (R2 = 0.96) with intelligence.
The relationship between weaning and intelligence is also

statistically significant when controlling for phylogenetic re-
latedness. Using a phylogenetic generalized least squares linear
regression that respects the nonindependence of the sampled
genera and phylogenetic data provided by ref. 46, weaning time
is a significant predictor of intelligence (standardized β= 0.78,
t= 3.32, p< 0.01). As these make clear, weaning time is strongly
related to behavioral measures of intelligence.

Altriciality Predicts Intelligence Beyond Other Factors. It is impor-
tant to establish that the linkage between altriciality and in-
telligence is not due to confounding variables. In principle, it is
easy to imagine a history of life in which altriciality is correlated
with intelligence, yet has no direct causal influence. For instance,
a selective pressure for intelligence (due to, e.g., environmental
factors) might increase brain size and thus through physical
constraints lower the birth age. To test this, we can perform a
more detailed analysis looking for effects of weaning time over
and above other predictors. If altriciality effects were determined
by another variable, the effects should disappear once the other
variable is controlled.
In fact, weaning time has a strong relationship to intelligence

controlling for other variables, and most control predictors have

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

0

2

4

6

8

10

P(survive to adulthood) for 0.4

Birth age (months)

B
ra

in
 s

iz
e 

(r
ad

iu
s)

0 5 10 15 20 25 30

0
2

4
6

8
10

Population dynamics

Birth age (months)

B
ra

in
 r

ad
iu

s 
(c

m
)

A B
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zero effect once weaning time is controlled. Table 1 shows a sep-
arate phylogenetic least squares regression in each row, with coef-
ficients for weaning age (first three columns) and a variety of other
predictors (last three columns) using all genera for which these
measures were available. These results demonstrate our predicted
positive effects of weaning age on intelligence controlling for each
covariate, reaching statistical significance in all but two cases and
marginal significance in those. Moreover, controlling for weaning
time, only one of the other covariates is statistically significant, and
weaning time is still a significant predictor in that regression. The

significance may be an artifact of using brain volume divided by
body mass (see Table S1 for a more detailed analysis). Table S2
shows similar, although quantitatively stronger, effects using stan-
dard nonphylogenetically controlled regressions. Table S1 shows
similar effects with multiple brain and body size predictors. These
results are strongly suggestive that our a priori prediction of the
importance of weaning both holds and the pattern is unlikely to be
the result of these other variables.
The evolutionary model can also exhibit a stronger relation-

ship between time-till-maturity and intelligence than brain size
and intelligence. Because intelligence and brain size are corre-
lated but not deterministically related, either one may come to
determine survival, controlled in large part by γ. In the model
runs for Fig. 2 above which used γ = 0.4, weaning time was always
a significant predictor of intelligence once brain size was con-
trolled, but brain size was often (15%) not a significant predictor
once weaning time was controlled.

Discussion
The dynamics of the model explain how extreme levels of intelli-
gence may evolve without requiring additional outside pressures.
Once a population has moved into the appropriate region of the
space, trends for growing brain sizes and lowering birth ages will
mutually reinforce each other. This can lead to runaway selection
for premature infants and big brains, relative to the other present
physical and ecological constraints. One must still explain why
human populations happened to move into parts of space that
would lead to these runaway dynamics. It is possible that envi-
ronmental factors—perhaps those already proposed to play a piv-
otal role in human evolution—helped to move our species to this
region of dynamical space. We emphasize that the theory should be
viewed tentatively. Our results show strong effects of altriciality on
primate intelligence, and our model demonstrates that runaway
selection is logically possible, but further work is needed to test this
relationship and the model’s assumptions.
If the runaway dynamics demonstrated here did play a pivotal

role in human evolution, it would mean that many of the rich
cognitive abilities observed in humans may be epiphenomenal of
selection for neonatal care. In general, this is difficult to assess
because nearly every human ability could be construed as useful
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Fig. 3. Relationship between weaning time and intelligence (Kendall’s
τ=0.62) across all primate genera for which these data were available (N =
23). Numbers give the count of species in each weaning estimate (x axis).

Table 1. Analyses predicting the behavioral intelligence measure fromweaning age and a control covariate using a
phylogenetic least squares regression

Weaning age Control variable (standardized)

R̂2Coefficient SE P value Predictor Coefficient SE P value

0.96 0.35 0.01 scale(neocortex) −0.13 0.38 0.37 0.71
0.76 0.40 0.04 scale(total  brain  volume1=3) 0.20 0.47 0.33 0.72
0.89 0.38 0.02 scale(total  brain  volume2=3) −0.01 0.42 0.49 0.71
0.95 0.35 0.01 scale(total brain volume) −0.11 0.37 0.38 0.71
0.86 0.37 0.02 scale(neocortex/total brain volume) 0.09 0.72 0.45 0.72
0.99 0.28 0.00 scale(EQ) −0.30 0.25 0.12 0.66
0.89 0.28 0.00 scale(adult body mass) −0.04 0.20 0.42 0.71
0.62 0.25 0.01 scale(total brain volume/adult body mass) −0.52 0.20 0.01 0.75
0.83 0.32 0.01 scale(neonate body mass) 0.13 0.35 0.36 0.71
0.65 0.30 0.02 scale(neonate body mass/adult body mass) −0.35 0.23 0.07 0.71
0.68 0.37 0.05 scale(log(neocortex)) 0.41 0.51 0.21 0.73
0.67 0.37 0.04 scale(log(total brain volume)) 0.41 0.48 0.20 0.73
0.86 0.35 0.01 scale(log(neocortex/total brain volume)) 0.09 0.72 0.45 0.72
0.98 0.28 0.00 scale(log(EQ)) −0.28 0.29 0.17 0.66
0.66 0.33 0.03 scale(log(adult body mass)) 0.44 0.38 0.13 0.74
0.77 0.28 0.01 scale(log(total brain volume/adult body mass)) −0.29 0.22 0.10 0.73
0.56 0.33 0.06 scale(log(neonate body mass)) 0.78 0.48 0.07 0.71
0.84 0.30 0.01 scale(log(neonate body mass/adult body mass)) −0.09 0.24 0.36 0.71

Other variables have little effect once weaning is controlled, pointing to the importance of altriciality over and above these other
factors in determining intelligence. All P values are one-tailed. R̂2 gives the raw correlation between fit and observed values.
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for childcare in some way. However, the account complements
several prior theories of human distinctiveness, notably theories
based in social interaction (2, 3, 7, 10, 47), as well as reproduc-
tion and childrearing (48–51). Altricial neonates require sub-
stantial parental attention. Sophisticated means of reading social
intentions may have evolved specifically to care for young chil-
dren who cannot address their own needs. Such demands might
also give rise to social systems of cooperative breeding for
childrearing—systems that could efficiently organized or share
time and material resources and which have been suggested as
pivotal in human evolution (50, 51). This fits well with the view
that human reproductive behavior—including monogamous pair
bonding, parenting, and social relationships—may have been a
driving factor throughout human evolution (48, 49).
Our theory also addresses the question of why extraordinary

intelligence evolved in humans and not in other species. Why did
insects, reptiles, or fish—each of which has been around far
longer than mammals—not develop such cognition first? If our
intelligence has been driven by environmental or social chal-
lenges, why did species that lived in harsh environments or social
groups long before humans not develop human-like intelligence?
The answer provided by our account lies in the model’s inherent
linking of intelligence and the timing of childbirth. The runaway
dynamics of the model only become possible in viviparous spe-
cies. This is because in oviparous animals, the skull can form
after eggs are laid so there is no inherent linkage between the
maturity of offspring at birth and the animal’s brain size or
intelligence. However, in live birth, animals must traverse the
birth canal with a mostly formed skeletal structure, meaning
that birth age and maturity must be set inherently to accom-
modate brain size. As Fig. 2B illustrates, the runaway dynamics
are only possible when brains become large enough to permit
runaway dynamics. Because one of the defining features of
mammals is a neocortex, our account explains why extraordi-
nary intelligence evolved in viviparous mammals, namely, the
clade eutheria.
At the same time, if the demands of childcare are an impor-

tant factor, we should see links between altriciality and in-
telligence without runaway selection in other species. This has
been noticed previously, where altricial bird species have larger
brains in adulthood relative to body size (52). Corvids and par-
rots, for instance, are unusually intelligent; they also have an
extended development before the young are independent from
their parents’ nutritional support (53).
Our account also predicts a particularly strong coupling be-

tween mothers’ intelligence and rates of infant mortality. In the
Serbian Roma, there are significant effects of IQ on infant
mortality (R=−0.26) after controlling for parental education
and age (54). However, more commonly, education effects on
infant mortality have been quantified. Mothers with 13 or more
years of education have approximately half the rates of infant
mortality than those with 0 to 11 years among California parents
(55). Decreases in child mortality in the developing world have
been attributed to improving healthcare as well as education
even over and above effects of economics (56–58), with a decline
of approximately 8% in under-5 mortality for every year of ma-
ternal education. Studies of the developing world also show that
child mortality also exhibits patterns consistent with our model’s
assumptions, with a mode of deaths near birth (≤1 mo) and
another in early childhood (9–24 mo). This matches the model,
in which children’s survival depends on two separable factors:
surviving birth and surviving childhood. This literature highlights
the importance of parental care, as well as the inherent difficulty
of raising human children.

Conclusion
It is very hard to imagine an adult of any other species raising a
human infant. In the literature on feral children, there are no

clear cases of children adopted in infancy. It has even been
suggested that purportedly feral children were instead autistic
and it was only conjecture that they were raised by animals (59).
This observation raises an evolutionary puzzle: How could it be
the case that humans have evolved to the point that so much
intelligence is required to raise our own children? This motivates
the search for mechanisms that could solve such a paradoxical
thinkin’-and-egg problem.
Our modeling has shown that the evolutionary dynamics of

caring for neonates may select for intelligence, which in turn
requires even more brainpower, pushing infants to be born even
earlier to accommodate their larger brains. The model is not
intended as a full account but rather as a piece of a much more
complex evolutionary and reproductive history in which multiple
traits are interrelated (49). Our work has intentionally focused
on a simplified model to understand if the requisite dynamics are
possible from basic assumptions. As the account predicted, the
helplessness of a species’ neonates is a particularly good predictor of
parental intelligence, over and above other factors. Finally, this
theory can explain why such intelligence evolved in mammals rather
than other lineages that had more time to evolve human-level in-
telligence, yet failed to do so.

Materials and Methods
Gompertz Fitting. The Gompertz equation (Eq. 1) was fit to male child growth
standards provided by the World Health Organization. These standards
consist of head circumference measurements from children 0–13 wk after
birth or, in our analysis, 38–52 wk postconception. We fit these parameters
using least-squares fitting via R’s stats library’s optim function (60), in-
cluding one single additional data point for 0 head size at t = 0 months
postconception.

Model Methods. To generate Fig. 2 and the reported model correlations, a
population was started randomly at a birth age between 5 and 25 and a
brain size between 0 and 8. The model was run on population sizes of 1,000
individuals for 100 generations. The correlations (e.g., between weaning age
and intelligence) were computed by dividing 1,000 runs into life histories of
25 species and computing the average correlation within histories. Because
Fig. 3 and associated statistics excludes humans, the model correlations ex-
cluded the very large-brained (R> 6) and high-birth age (T > 8) species. We
note that the dynamics and correlations are sensitive to a number of
implementational choices, including the number of generations, distribution
of starting positions, correlation between intelligence and brain size muta-
tions, and the point at which individuals are considered to be mature. Pa-
rameters were explored using a grid search. Code is provided for the model
by S.T.P.

Weaning Age Estimate.Weaning ages were retrieved from ref. 43. To find the
average level in each genus, we used the median of the reported times.
Missing weaning ages for Presbytis and Cercocebus were added using ref.
61. Weaning times used were raw, not transformed allometrically.

Brain Size Estimates. Brain size estimates were taken from ref. 45, using both
neocortex and total brain size measures from Table 1. Note that in this table
there appeared to be an error on the total brain size of Miopithecus. We
used the value 37,760 mm3.

Phylogenetic Generalized Least Squares Regression. A phylogenetic tree for
primate genera was shared by the authors of a recent molecular phylogeny
(46). We performed a phylogenetic generalized least squares regression
using the ape package in R (62), assuming a Brownian motion model and
using the gls function from nlme.
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