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Abstract

Human infants, like immature members of any species, must be highly selective in sampling information from their
environment to learn efficiently. Failure to be selective would waste precious computational resources on material that is
already known (too simple) or unknowable (too complex). In two experiments with 7- and 8-month-olds, we measure
infants’ visual attention to sequences of events varying in complexity, as determined by an ideal learner model. Infants’
probability of looking away was greatest on stimulus items whose complexity (negative log probability) according to the
model was either very low or very high. These results suggest a principle of infant attention that may have broad
applicability: infants implicitly seek to maintain intermediate rates of information absorption and avoid wasting cognitive
resources on overly simple or overly complex events.
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Introduction

Human infants face two daunting problems as they begin to

learn about their surroundings. First, they enter the postnatal

world with only rudimentary mechanisms–provided by their

evolutionary heritage–for interpreting environmental information.

Second, the potential information available in the environment is

both voluminous and complex. These two problems led William

James to coin his famous phrase about ‘‘the blooming, buzzing

confusion’’ that confronts the newborn [1]. Nonetheless, infants

show remarkable feats of learning, beginning in the last trimester

of fetal life, continuing through the perinatal period, and

accelerating through infancy and early childhood [2–5]. Infants

are able to extract the statistical properties of their environment in

a diverse array of learning tasks and domains, including sounds,

words, people, shapes, and objects [6–11]. But how is it that

infants are able to learn efficiently in such a complex environment?

One solution is to have a small set of innate biases; for example,

seeking to look at and listen to biologically significant stimuli such

as faces and speech. However, innate biases alone cannot be the

solution for the vast majority of stimuli from which infants must

learn. Given the slow time-course of evolution, we also need

general purpose learning mechanisms to deal with a changing

environment and with classes of stimuli that could not plausibly be

processed by a small set of specialized mechanisms.

Here, we focus on this general-purpose learning mechanism by

avoiding the use of special stimuli and asking whether infants

deploy a sensible (and likely implicit) strategy for allocating

attention to arbitrary, neutral stimuli. Our goal is to determine

whether infants are biased to gather information from the

environment in a principled way that serves as a key component

of an efficient learning mechanism [12,13]. Specifically, we

provide evidence that infants avoid spending time examining

stimuli that are either too simple (highly predictable) or too complex

(highly unexpected) according to their implicit beliefs about the

probabilistic structure of events in the world. Rather, infants

allocate their greatest amount of attention to events of in-

termediate surprisingness–events that are likely to have just enough

complexity so that they are interesting, but not so much that they

cannot be understood. This approach builds on a longstanding

tradition in developmental psychology, as exemplified by Piaget

[13]. He argued that when children are confronted with a new

piece of information, they initially attempt to incorporate it within

their existing knowledge structures through a process of assimilation.

When this is not possible, children either fail to learn new

structures (and move on to sample other information) or they

adapt by creating new knowledge structures, a process he called

accommodation.

Piaget had no objective measure of assimilation or accommo-

dation; they remained hypothetical constructs. However, in

subsequent research, a proxy for these theoretical constructs

centered on the relative duration of visual attention to objects or

events varying in complexity or familiarity. Many researchers have

speculated about what underlying mental operations are indexed

by infants’ looking times or attentional patterns [14] (for review,

see Aslin 2007 [15]). The generally accepted view is that looking

times reflect some combination of (a) stimulus-driven attention, (b)
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memory of past stimuli, and (c) comparison between the current

and the past stimuli. If infants are presented with an already

familiar stimulus, they prefer it over a novel stimulus, but quickly

tire of it after a brief period of re-familiarization (habituation), and

subsequently show preferences for novel stimuli. Similarly, if

repeatedly exposed to an initially novel stimulus, infant looking

times decline and then recover to the presentation of another novel

(i.e., completely unfamiliar) stimulus. Theoretical accounts for

these familiarity and novelty preferences all share a common

theme: As infants attempt to encode various features of a visual

stimulus, the efficiency or depth of this encoding process

determines their subsequent preferences. Familiarity preferences

arise when infants have not yet completed encoding the familiar

stimulus into memory, or when the novel stimulus is too dissimilar

from the infants’ existing mental representations to be readily

encoded [16–22].

However, these theories lacked an objective measure of the

relevant independent variable–an event’s complexity or relationship to

existing representations. Instead, researchers overwhelmingly relied on

qualitative judgments of stimulus complexity to select materials to

test infants’ visual preferences. These qualitative judgments relied

on inferences about infants’ existing mental representations, to

which researchers had no direct access. With no reasonable way of

modeling infants’ existing representations, it was impossible to

quantitatively measure the complexity of the information con-

veyed by a particular stimulus. Thus, researchers had only post hoc

estimates of stimulus complexity–those obtained by measuring the

very patterns of visual preferences that the theories were designed

to predict. Two exceptions are Civan, Teller & Palmer 2005 [23]

and Kaldy & Blaser 2006 [24] in that both papers quantified the

perceptual salience of visual stimuli in order to effectively

demonstrate its importance in eliciting infants’ preferences for

novel versus familiar stimuli.

We overcome these problems by formalizing a notion of

stimulus complexity and behaviorally testing the relationship

between complexity and infants’ probability of looking away at

each successive point in a sequence of events. We assume that

at each point in the experiment–and in everyday life–infants

have used observed data to form probabilistic expectations

about what events are likely and unlikely to be observed next

[25,26]. We model these expectations using an idealized

observer model of our experimental stimuli. We then measure

complexity as the negative log probability of an event according to

this idealized model. This measure quantifies each event’s

information content [27]. (This measure has also been called

surprisal [28], since it may also be interpreted as representing the

‘‘surprise’’ of seeing the outcome.) We show that infants

preferentially look away at events that are either very simple

(high probability) or very complex (low probability), according

to the idealized model. Intuitively, high probability events

convey little information–infants’ attentional resources are best

spent elsewhere. Low probability events may indicate that the

observed stimuli are unlearnable, unstructured, or difficult to

use predictively in the future. Negative log probability also

quantifies the number of bits of information an ideal observer

would require to encode that sequence of events in memory.

Thus, infants may avoid stimuli that require encoding too much

information or information that could only be extracted by

prolonged attention to rare events, thereby incurring a higher

processing cost than shifting attention to less complex events.

Experiment and Modeling Approach
The behavioral experiment measured the point, in a sequence

of events, when an infant looked away from a visual display.

The displayed stimuli were easily captured by a simple statistical

model. In Experiment 1, we presented each infant with 42

unique animated displays, each featuring one of 42 uniquely

colored and patterned boxes occluding one of 42 unique

familiar objects (e.g., a ball). Each scene display began with the

occluder rising and falling, thus appearing to reveal and then

re-obscure the object hidden behind it (Fig. 1(a) and Video
S1). To maintain infants’ attention early in the experiment, the

first reveal always showed an object. For example, a blue polka-

dotted occluder might rise to reveal a toy fire truck. On

subsequent reveals, the same object appeared in the box

according to some probability randomly assigned to that trial.

For example, if a trial were associated with the probability of

0.3, then 30% of the time an object would be present behind

the box. Probabilities ranged from 0 to 1 in increments of 0.05

(i.e., 0.0, 0.05, 0.1, 0.15, etc.), such that there were 21 possible

probabilities-of-appearance that could be associated with an

object on a particular trial. The sequences of object reveals thus

varied in terms of their information-theoretic properties: some

events in a sequence were highly predictable (e.g., a ball

appears still in the box after having appeared on each of ten

previous reveals), and others were less predictable (e.g., a rattle

appears to have disappeared from within the box after having

appeared on each of the ten previous reveals). The objects,

boxes, and order in which the probabilities-of-appearance were

presented were randomized across infants, and each of the 21

probabilities-of-appearance occurred twice (for a total of 42

trials). Each animated sequence of events continued until the

infant met the look-away criterion, which was defined as gaze

directed off-screen for greater than 1 consecutive second (see

Video S3 for look-away example). To address uncertainty

about infants’ mental representations and their age-related or

uniquely individual processing speeds and biases for stimulus

salience, we exhaustively randomized and counterbalanced all of

these extraneous variables (e.g., sequence order, object identity,

object familiarity, spatial location).

We modeled the sequences of reveals using a Markov Dirichlet-

multinomial model (MDM). The Dirichlet-multinomial is a general-

purpose statistical model that uses observed event counts to

compute a posterior distribution for an underlying multinomial

distribution on events. The Dirichlet-multinomial makes para-

metric assumptions about the form of the prior probability and the

likelihood of an event and is often used in Bayesian statistics

because of its computational simplicity (see Materials and Methods).

We apply this to a time-series of events by making a Markov

assumption that each event is statistically independent (i.e., not

dependent on the ordering of the preceding events). Thus, the

model can take some previously observed sequence of events–

corresponding to an individual infant’s observations before they

have looked away–and compute the probability of every possible

next event. We hypothesize that infants’ probability of looking

away at the next event in a sequence is at least partially

determined by the information-theoretic properties of that event,

according to the model. Specifically, at each point in a sequence of

events, the model assigns each event a probability, and the

negative log of this probability provides a natural information-

theoretic measure of the complexity of the next event according to

the model’s current expectations about which events are likely.

Fig. 2 illustrates the logic of the experiment and analysis. In the

first example, the observer sees a sequence of four A events in

a row. In this case, the observed data consist of entirely A’s. These

data are combined with the prior–essentially a smoothing term to

avoid zero probabilities–to form an updated posterior belief with

high probability of A but non-zero probability of B (‘‘Updated belief’’

Infants Prefer Medially Complex Events
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column). The complexity (negative log probability) of the next

event is determined using this posterior, which represents the

model’s updated belief about the true distribution of events. Thus,

if the next event is an A–an event that is highly likely according to

the model’s posterior–the complexity of that event would be low

(i.e., the event would be highly predictable according to the

model). We hypothesize that infants would be more likely to look

away at this event. Conversely, if the previous observations assign

A very low probability (second example), A will have very high

complexity (i.e., the event would be highly surprising according to

the model) and infants should terminate the sequence of events by

looking away. If the previous observations make A moderately

likely (third example), the occurrence of an A event will convey

a ‘‘Goldilocks’’ amount of information, leading infants to be less

likely to look away. If infants do not look away, then the modeling

step is repeated for the next item in the sequence. This means that

infants may look away at different points in different sequences,

but we predict systematicity in these look-aways: regardless of how

far into a sequence an infant has made it without looking away,

their probability of looking away on the next object will depend on

its complexity, conditioning on all previous observations.

We note that this type of modeling and analysis contrasts with

most previous infant studies, which typically tested for differences

in overall mean looking times. Here, we are predicting a binary

outcome (whether an infant looks away) at each individual event in

the sequence. This is a more precise prediction based on

probabilities computed on-line.

Results

Experiment 1
Fig. 3 shows infants’ probability of looking away, as a function

of that event’s negative log probability according to the model, and

collapsing across infants, sequences, and sequence positions. The

diamonds show raw probability of look-away, binning complexity

into 5 discrete bins. The curve represents the fit of a Generalized

Additive Model [29], which attempts to find a smooth relationship

between complexity and look-away probability. This figure shows

a U-shaped relationship between infant look-away probability and

the on-line model-based estimate of complexity, with infants

looking away from events that are especially predictable or

especially surprising. There is a ‘‘Goldilocks’’ value of complexity

Figure 1. Examples of visual displays used in Experiments 1 and 2. a) The object (e.g., a toy fire truck) in the box for Experiment 1 was
revealed (or not) by up-down animation of an occluder (e.g., a blue polka-dotted box). b) In Experiment 2, one of three unique objects (e.g., a baby
bottle) popped up from behind one of three highly distinctive boxes. Also see Videos S1 and S2 for examples of animated displays used in these
studies.
doi:10.1371/journal.pone.0036399.g001

Figure 2. Schematic showing several example event sequences and how the ideal observer model combines observed events with
a simple prior to form expectations about upcoming events. The next event then conveys some amount of information according to these
probabilistic expectations, which is related to infants’ probability of look-away at a specific next event by a U-shaped function.
doi:10.1371/journal.pone.0036399.g002

Infants Prefer Medially Complex Events
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around 1.25 bits, corresponding to infants’ preferred information

rate in this task.

Although the plot in Fig. 3 provides a revealing picture of the

relationship between indexes of complexity and looking durations,

there are likely other factors that influence when infants will look

away from the displays. For instance, low-information and high-

information events may tend to occur later in a sequence, after

learners have developed expectations about the distributional

properties of the events. If infants tend not to look away early,

perhaps because they are initially captured by the salience of the

display independent of its complexity, they would appear to

disprefer low and high complexity. To address this potential

confound, we performed a regression analysis that controls for the

influence of temporal and other factors on look-away probability.

When infants look away in a trial, they provide no more data for

the remainder of the trial. Because of this, such data violate the

independence assumptions of standard logistic (or linear) re-

gression. An appropriate model for this kind of data–used

primarily in biostatistics to study, for example, predictors of

mortality–is known as a survival analysis [30,31]. We used a type of

survival analysis known as a Cox regression, that measures the log

linear influence of predictors on look-away probability, while

respecting the fact that once infants look away they provide no

additional data on the same trial. Importantly, this regression also

controls for a baseline look-away distribution, which is fit non-

parametrically to the data, thereby removing the influence of an

average distribution of looking times before testing the significance

of the other predictors. We note that this regression does not

include subject effects, but we develop more sophisticated analysis

methods that include a range of subject effects in forthcoming

work [32].

We included a number of control covariates that could plausibly

influence infant look-aways using a stepwise procedure that only

added variables that improved model fit. These variables included

whether an object was present, whether the presence of the object

was the same as the previous reveal, how many sequences the

infant had already observed, and the uncertainty in the model

about the correct distribution of events. This was measured by the

differential entropy of the multinomial parameters in the MDM

model. We also included linear and quadratic complexity terms.

To aid in interpretation of the regression coefficients, complexity

was standardized before being squared (i.e., it was shifted and

scaled to have mean 0 and standard deviation 1) to test for

a significant quadratic trend of complexity on look-aways. This

stepwise procedure revealed a significant effect only for squared

complexity (b~0:052, z~1:969, pv0:05), and no other variables

(see Table 1). This indicates that the U-shape observed in Fig. 2 is

statistically significant, even after controlling for an overall baseline

look-away distribution and the other potentially confounding

variables (see Materials and Methods). The magnitude of this effect

can be understood by considering eb~1:05, which is the factor that

the baseline look-away probability is multiplied by for each

increase in squared surprisal of 1 standard deviation from the

overall mean in the experiment. This effect is relatively small,

though statistically reliable.

Experiment 2
In Experiment 1, objects were either present or absent from

behind a single occluder. Perhaps a more typical context in real

life, though, is for different events to occur in a multi-object scene,

thereby allowing infants’ attention to be attracted to both

individual events and transitions between events. In Experiment

2, we presented each infant with 32 unique sequential-event

displays (Fig. 1(b) and Video S2). Each display presented an

animated scene consisting of three uniquely patterned boxes, each

concealing a unique familiar object (e.g., a cookie). The locations

of the three boxes for a given sequence were chosen randomly but

remained static throughout a scene. The box locations were

randomly shuffled between event sequences, but no more than two

boxes appeared on either half of the screen. Neither the patterns

on the boxes nor the objects were repeated across event sequences

so that each object-box pair was independent and unique. Each

event in a sequence consisted of an object that popped out of a box,

and then back into the box. Each event lasted 2 seconds in total

duration (1-second ‘‘pop-up’’, 1-second ‘‘pop-down’’). Events were

presented sequentially with no overlap or delay. The same 32

event sequences were presented to every infant. However, the

objects, boxes, and order in which the 32 event sequences were

presented were randomized across infants. This design ensured

that differences in looking times across event sequences were not

driven by differences in scene items or presentation order. Each

animated sequence of events continued until the infant met the

look-away criterion, which was defined as gaze directed off-screen

for greater than 1 consecutive second.

Results from Experiment 2 are shown in Fig. 4. As in

Experiment 1, there is a U-shaped relationship between look-away

probability and complexity, as measured by the same MDM

model (assuming event independence) used in Experiment 1. The

Cox regression for Experiment 2 included all of the covariates used

in Experiment 1, except whether an object was present, since there

was always an object popping up from behind one of the three

boxes. However, because there are three different box-object pairs

in each scene, we also included covariates measuring whether the

current event is the first time an object has appeared from behind

a box, and a factor measuring how many objects have not yet

popped up. Results of this analysis are shown in Table 1. As in

Experiment 1, this analysis revealed significant effects of squared

complexity (b~0:269, z~2:47, pv0:013). Here, eb~1:308,
meaning that each increase of squared complexity 1 standard

deviation from the mean resulted in a look-away probability that

Figure 3. U-shaped curve for single-box display used in
Experiment 1. The solid curve represents the fit of a Generalized
Additive Model (GAM) [29] with binomial link function, relating
complexity according to the MDM model (x-axis) to infants’ look-away
probability (y-axis). The dashed curves show standard errors according
to the GAM. The GAM fits include the effect of complexity (negative log
probability) and the effect of position in the sequence. Note, the error
bars and GAM errors do not take into account subject effects. Vertical
spikes on the x-axis represent data points collected at each complexity
value. The red diamonds represent the raw look-away probabilities
binned along the x-axis.
doi:10.1371/journal.pone.0036399.g003
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was a factor of 1:31 times greater. This is a much larger effect than

that found in Experiment 1. There was also a significant linear

effect of complexity, indicating that the U is not symmetric about

the mean (b~{0:216, z~{2:291, pv0:05), and an effect of trial

number, likely representing effects of fatigue

(b~0:029, z~3:994, pv0:001), although this is small compared

to the complexity effects (eb~1:03).
We also applied the MDM model to the data from Experiment

2 under an assumption of event-order dependence. That is, instead

of treating every event as independent, we examined whether

look-aways were predicted by the immediately preceding event

(i.e., a transitional model). Fig. 5 shows that a U-shaped function

also describes this transitional model, and the Cox regression

confirms that this effect is highly significant

(b~0:356, z~4:27, pv0:001). This analysis also revealed an

effect of trial-number (b~0:027, z~3:645, pv0:001).
Finally, one can ask which of the two models better accounts for

infants’ behavior on the task in Experiment 2. The predictions of

the transitional and non-transitional models are difficult to

distinguish because they are closely related: Complexity of both

models is correlated at R~0:62 (pv0:001). However, if both are

entered into a Cox regression along with all variables found to be

significant, the transitional complexity is significant

(b~0:289, pv0:01), but the non-transitional complexity is not

(b~0:015, pw0:84). This provides strong evidence that infants

track transitional probabilities, but the null result for the non-

transitional model is difficult to interpret due to its correlation with

the transitional model and the noise inherent in infant data.

Table 1. Cox Regression Coefficients.

Covariate Coefficient exp(coefficient) Standard error Z-statistic P-value

Experiment 1

Squared complexity 0.052 1.05 0.026 1.969 0.049

Experiment 2 - Non-transitional model

Complexity 20.216 0.805 0.094 22.29 0.022

Squared complexity 0.269 1.308 0.109 2.47 0.013

Trial number 0.029 1.030 0.007 3.99 6.5.10–5

Model uncertainty 0.261 1.298 0.174 1.50 0.13

Experiment 2 - Transitional model

Squared complexity 0.356 1.43 0.084 4.27 1.9.10–5

Trial number 0.027 1.03 0.007 3.65 2.7.10–4

First appearance 0.500 1.64 0.272 1.82 0.069

All variables found in Experiments 1 and 2 that were added by the stepwise procedure. Note that some non-significant variables are added because the stepwise
comparison is based on the Akaike information criterion [40]. These results reveal significant quadratic effects of complexity in both experiments. Complexity and
squared complexity were shifted and scaled to have mean of 0 and standard deviation of 1 before being entered into the regression.
doi:10.1371/journal.pone.0036399.t001

Figure 4. U-shaped curve for three-box display used in
Experiment 2. The solid curve represents the fit of a GAM, relating
complexity as measured by the non-transitional MDM (assuming event
independence) to look-away probability. Dashed curves show GAM
standard errors. The GAM fits include the effect of complexity (negative
log probability) and the effect of position in the sequence. Note, the
error bars and GAM errors do not take into account subject effects.
Vertical spikes on the x-axis represent data points collected at each
complexity value. The red diamonds represent the raw look-away
probabilities binned along the x-axis.
doi:10.1371/journal.pone.0036399.g004

Figure 5. U-shaped curve for three-box display used in
Experiment 2. The solid curve represents the fit of a GAM, relating
complexity as measured by the transitional MDM to look-away
probability. Dashed curves show GAM standard errors. The GAM fits
include the effect of complexity (negative log probability) and the effect
of position in the sequence. Note, the error bars and GAM errors do not
take into account subject effects. Vertical spikes on the x-axis represent
data points collected at each complexity value. The red diamonds
represent the raw look-away probabilities binned along the x-axis.
doi:10.1371/journal.pone.0036399.g005
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Discussion

The results of the experiments reported here have important

implications for two interrelated hypotheses concerning infants’

attention. First, infants behave as if they are employing a principled

inferential process for learning about events in the world. The

particular MDM model used in our analyses took as inputs a series

of observed events or transitions between events to form

probabilistic expectations about what events are most likely to

occur in the future. The model was necessary to determine what

complexity a set of stimulus events conveys to an ideal observer. A

failure of either of these components–the probabilistic model or

the linking assumption that maps level of complexity onto looking

times–would have yielded null results.

Second, infants appear to allocate their attention in order to

maintain an intermediate level of complexity. A powerful feature

of our analyses was the ability, via the Cox regression, to control

for potential confounds such as the number of items that have not

appeared yet, item repeats, and an arbitrary baseline distribution

of look-away probabilities. To our knowledge, the hypothesis that

infants prefer a particular level of information has not been tested

while controlling for these other variables, and our analyses

therefore provide several methodological advances. Rather than

predicting infants’ average looking time to a stimulus, our analyses

predicted the precise event in a sequence when an infant would

terminate (i.e., look away from) the display. Although others have

observed U-shaped behavior in infants under some circumstances,

our results provide the first evidence that the information-theoretic

properties of a formal model provide a significant predictor of

infant look-aways, over and above the effects of other variables, for

a large set of arbitrary, neutral visual stimuli. Interestingly, this U-

shaped pattern is similar to those obtained with many earlier

models of visual attention based on depth of processing or

difficulty of encoding the stimulus [17–19]. This could indicate

that while earlier models did not computationally define the

stimulus properties they hypothesized as the mediators of infant

looking times (i.e., complexity), the properties they explored are

nevertheless relevant in guiding infants’ visual attention. Our

results also provide a formal account for why infants show novelty

preferences (when two test stimuli fall on the left half of the U-

shaped function, the stimulus with greater complexity elicits more

attention) or familiarity preferences (when two test stimuli fall on

the right half of the U-shaped function, the stimulus with lesser

complexity elicits more attention).

Similar hypotheses about how adults allocate their limited

resources in the language domain–for example, those supporting

a uniform information principle [33–37]–may suggest that what

we have observed in infants reflects a ubiquitous constraint across

domains and developmental levels. In addition, other theories

propose that learners allocate attention to stimuli containing just

the right level of complexity because optimal complexity triggers

just the right amount of ‘‘arousal’’ in the learner [38]. The U-

shaped function may result from the basic response properties of

neural systems [39], although determining the precise mechanism

will require further research.

In summary, our findings are consistent with theories that

suggest infants actively seek to maintain an intermediate level of

information absorption, avoiding allocating cognitive resources to

either overly predictable or overly surprising events. It is important

to note that we are not claiming that this Goldilocks effect is the

only factor in infants’ allocation of attention. Certainly, there are

species-typical preferences and effects of learning that can

dominate infants’ attentional behavior. We argue that when these

other factors are controlled for, there remains a significant U-

shaped effect of complexity that is well accounted for by our

model. Further investigation is required to determine how infants’

preference for intermediate levels of information affects the

outcome of learning, either by enhancing the rate of learning or

its asymptotic level.

Materials and Methods

Ethics Statement
All research was approved by the Research Subjects Review

Board at the University of Rochester (protocol RSRB00024570).

Parents volunteering their infants for the study were fully informed

of the study procedures and completed written informed consent

and permission forms in advance of the study.

Visual Stimuli
In Experiments 1 and 2, we presented infants with animated

displays depicting event sequences varying in their predictability.

All displays featured uniquely colored and patterned boxes (e.g.,

pink polka dots) that were animated to reveal unique familiar

objects (e.g., a ball; see Videos S1 and S2 for examples). A

Matlab script was used to generate each of the animated displays.

Neither the boxes nor the objects were repeated across event

sequences so that each object-box pair was independent and

unique. The objects, boxes, and order in which the event

sequences were presented were also randomized across infants.

This design ensured that differences in looking time across event

sequences were not driven by differences in scene items or

presentation order.

In Experiment 1, each animated sequence featured one unique

object occluded by one box. The box opened (1 second) and closed (1

second) repeatedly, each time revealing the contents of the box.

The object always appeared in the box on the first reveal event.

On subsequent reveal events, the object was either present or

absent depending on the predictability of the event sequence

selected for that trial (a value between 0 and 1). So, for example,

a single trial might feature a purple striped box occluding a small

toy train with a probability-of-appearance of 0.5. The sequence of

events (object appears = 1, empty box = 0) might be: 1, 1, 0, 1, 0,

1, 0, 1, 0, 0. The reveals were presented sequentially with no

overlap or delay. There were 21 unique probabilities-of-appear-

ance (increments of 0.05 between 0 and 1, e.g., 0, 0.05, 0.1, 0.15,

…) and all were presented to each infant twice (42 trials in total) in

a random order.

In Experiment 2, each animated display featured three boxes of

three unique colors and patterns (e.g., yellow stripes, blue polka

dots, green stars), each concealing a unique object (e.g., a cookie,

a spoon, a car). The locations of the three boxes for a given

sequence were chosen randomly but remained static throughout

a scene. The box locations were randomly shuffled on the

screen between event sequences, with the constraint that no

more than two boxes appeared on either half of the screen.

Each event in a sequence consisted of one of the three unique

objects popping out from behind one of the three boxes (1

second), and then back into the box (1 second). Thus, the total

duration of each event was 2 seconds, and events were

presented sequentially with no overlap or delay. There were

32 unique event sequences that varied in the probability that

each of the three objects appeared from behind their respective

occluding boxes. Some sequences were simple (e.g., A, A, A, A,

A, A, …), while others were more complex (e.g., A, B, A, B, A,

C, …). All event sequences were presented to each infant (32

trials in total).
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Methods

The procedures for Experiments 1 and 2 were identical, with

two exceptions: the type of displays used (single-box in Experiment

1 and three-box in Experiment 2) and the number of trials

presented to each infant (42 in Experiment 1 and 32 in

Experiment 2). Each infant was seated on his or her parent’s lap

in front of a table-mounted Tobii 1750 eye-tracker. The infant was

positioned such that his or her eyes were approximately 23 inches

from the monitor, the recommended distance for accurate eye-

tracking. At this viewing distance, the 17-inch LCD screen

subtended 24632 degrees of visual angle. Each of the three boxes

was 565 degrees. To prevent parental influence on the infant’s

behavior, the parent holding the infant was asked to wear

headphones playing music, wear a visor, lower their eyes, and

abstain from interacting with their infant throughout the

experiment.

Each trial was preceded by an animation designed to attract the

infant’s attention to the center of the screen–a laughing and cooing

baby. Once the infant looked at the attention-getter, an experi-

menter who was observing remotely pushed a button to start the

trial. For each trial, an animated scene–featuring a single box in

Experiment 1, or three boxes in Experiment 2–was played. The

animated sequences of reveal events continued until the infant

looked away continuously for 1 second, or until the sequence timed

out at 60 seconds. The 1-second look-away criterion for trial

terminationwas automatically determined by theTobii eye-tracking

software. If the infant looked continuously for the entire 60-second

sequence, the trial was automatically labeled as a ‘‘time out’’ and

discarded before the analysis (2.4%of trials inExperiment 1, 5.4%of

trials in Experiment 2). If the trial was terminated before the infant

actually looked away, the trial was labeled by an experimenter as

a ‘‘false stop’’ and also discarded. False stops, as determined by

a separate video recording of the infant’s face, occurred as a result of

the Tobii software being unable to detect the infant’s eyes

continuously for 1 second, usually due to the infant inadvertently

blocking the eye-tracker camera’s view of his or her own eyes with

head or arm movements (22.1% of trials in Experiment 1, and

20.7%of trials inExperiment 2). Trials inwhich the infant looked for

fewer than four events were also discarded, since it is presumed that

too few observations are insufficient for establishing expectations

about the distribution of events.

Subjects
In Experiment 1, 42 infants (mean =7.9 months, range =7.0 -

8.9) were included in the analysis. Forty-four infants were tested;

one infant was excluded due to excessive tiredness (he fell asleep

within the first few trials and could not be awakened), and one was

excluded due to fussiness. In Experiment 2, 30 infants (mean = 7.6

months, range = 7.0 - 8.8) were tested, and all participating infants

completed the study. In both studies, all infants were born full-

term and had no known health conditions, hearing loss, or visual

deficits according to parental report.

Ideal Learner Model
Intuitively, infants observe how many times each event occurs in

the world, and then use these event counts to infer an underlying

probability model of their observations. In Experiment 1, the two

possible events are that the screen lifts to reveal that an object is

either present or absent. In Experiment 2, there are three possible

events corresponding to which of three objects appears from

behind its box.

An observer who sees only a single event happen would not

likely infer that the single observed event is the only one possible

(i.e, has probability of 1); instead, observers likely bring

expectations to this learning task. In the MDM model used here,

this prior expectation is parameterized by a single free parameter,

a, which controls the strength of the learner’s prior belief that the

distribution of events is uniform. As a gets large, the model has

strong prior beliefs that the distribution of events in the world is

uniform; as a approaches zero, the model believes more strongly

that the true distribution closely resembles that of the empirically

observed event counts. In modeling, we chose a value of a=1,

corresponding to a uniform prior expectation about the distribu-

tion of events (with expected values 50-50 in Experiment 1 and 33-

33-33 in Experiment 2). However, the qualitative results–in

particular, the U-shaped relationship between complexity and

look-away probability–do not depend strongly on the choice of a.
Formally, suppose there are N events, x1,x2, . . . ,xN , and the ith

event has been observed ci times. We are interested in estimating

(or scoring) a multinomial distribution parameterized by

h~(h1,h2, . . . ,hN ) where hi is the true (unobserved) probability

of event xi. Under a Dirichlet-Multinomial model,

P(hjc1, . . . cN ,a)~
1

B
P
N

i~1
h
azci{1

i , ð1Þ

where B is a normalizing constant that depends on the ci and a:
That is, after observing each event type occur some number of

times, the infant may form a representation, h, of their guess at the
true distribution of events. Every distribution can be scored

according to Equation 1, allowing one to compute how strongly

a learner should believe that any particular h is the correct one.

We predict that infants’ likelihood of looking away at a current

event will depend upon the complexity of that current event,

which is determined by both the previously observed events and

the identity of the current event. We predict that events of either

very low complexity (highly predictable) or very high complexity

(highly surprising) will be more likely to trigger a look-away than

events with moderate complexity.

When the ith event occurs, the main variable of interest here is

its negative log probability according to the model. We compute

this by integrating over the above posterior distribution on h. This
corresponds to a measure of the information conveyed by

observing event i, according to an ideal Bayesian learner who

had seen all previous events. We predicted that infants would be

more likely to look away during events that contained either too

little or too much information, giving a U-shaped (quadratic)

relationship between this negative log probability measure and the

actual observed look-away probability.

Supporting Information

Video S1 An example of an animated single-box display used in

Experiment 1.

(MOV)

Video S2 An example of an animated three-box display used in

Experiment 2.

(MOV)

Video S3 A 7-month-old subject attending to a three-box display

in Experiment 2, and then looking away (and subsequently

terminating the trial).

(MOV)
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