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Infants must learn about many cognitive domains (e.g., language, music) from auditory statistics, yet capacity
limits on their cognitive resources restrict the quantity that they can encode. Previous research has established
that infants can attend to only a subset of available acoustic input. Yet few previous studies have directly
examined infant auditory attention, and none have directly tested theorized mechanisms of attentional selec-
tion based on stimulus complexity. This work utilizes model-based behavioral methods that were recently
developed to examine visual attention in infants (e.g., Kidd, Piantadosi, & Aslin, 2012). The present results
demonstrate that 7- to 8-month-old infants selectively attend to nonsocial auditory stimuli that are intermedi-
ately predictable/complex with respect to their current implicit beliefs and expectations. These findings pro-
vide evidence of a broad principle of infant attention across modalities and suggest that sound-to-sound
transitional statistics heavily influence the allocation of auditory attention in human infants.

Infants’ ability to learn from their mothers’ speech,
even before birth, is a testament to how remarkably
sensitive infants are to their auditory environments
(DeCasper & Fifer, 1980). This process of learning
from auditory statistics continues during the first
postnatal year as infants discover the phonetic cate-
gories (Kuhl, 2004) and word boundaries of their
native language (Saffran, Aslin, & Newport, 1996).
Infants achieve these auditory-learning milestones
by gathering acoustic input from the natural envi-
ronment, where myriad novel sounds and sound
sequences (e.g., speech syllables, musical notes)
unfold rapidly over time. A learner with an unlim-
ited information-processing capacity could theoreti-
cally encode all available auditory input as it
arrives at the ear. A human infant, however, pos-
sesses only finite, capacity-limited cognitive
resources (e.g., attention, memory, processing
speed). These cognitive constraints impose severe
limits on the kind and quantity of auditory input
an infant can encode in real time. Infants’ learning
is thus limited by constraints such as the temporal

rate at which they can access sequential inputs
(e.g., Conway & Christiansen, 2009), the number of
elements they can hold in working memory (e.g.,
Ross-Sheehy, Oakes, & Luck, 2003), and the depth
to which they can ultimately encode the novel stim-
ulus (e.g., Sokolov, 1969).

Even a single auditory stream (e.g., a mother
speaking to her child in an otherwise silent room)
expresses a complex composition and arrangement
of acoustic variables (e.g., intensity, pitch, timbre)
that additionally encode hierarchical levels of struc-
ture (e.g., sounds, syllables, phrases) and semantic
meaning (e.g., salience, emotion, category, identity).
Additionally, previous work with adults suggests
that human auditory processing is likely inferior to
visual processing in terms of resolution and capacity
(e.g., Cohen, Horowitz, & Wolfe, 2009). Thus, the
infant must pick and choose both to which auditory
inputs to attend and on which aspects of a single audi-
tory stream to focus. Locating and tracking the rele-
vant statistics from within the continuous surge of
incoming auditory data are then crucial for infants to
solve the many auditory learning tasks they face.

One reasonable strategy infants might employ in
the natural environment is to allocate attention on
an “as available” basis; that is, they might attempt
to encode all auditory inputs and effectively ignore
stimuli that exceed their information-processing
capacity. However, such an undirected learning
strategy would be inefficient at best, and futile at
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worst. Imagine, for example, attempting to com-
plete an open-book examination on an unfamiliar
subject in a vast library by drawing books from the
shelves at random. An alternative strategy would
be to make attention dependent upon relevant
properties of the stimulus itself, perhaps actively
allocating attention to auditory material that is most
useful for learning. This latter strategy might be
particularly advantageous for language learning
since the inventory of inputs is quite large (e.g., 40
phonemes, 1,000 syllables, 50,000 words) and the
multiplicity of combined sequences is vast.

A substantial amount of previous work on infant
attention theorized that such a strategy might help
infants focus on learning material that is sufficiently
novel from—but also sufficiently related to—the
infants’ existing knowledge (e.g., Friedlander, 1970;
Horowitz, 1972; Jeffrey & Cohen, 1971; Kinney &
Kagan, 1976; Melson & McCall, 1970; Zelazo &
Komer, 1971). Kinney and Kagan (1976) suggested
that preferring stimuli that are moderately novel
would prevent infants from wasting time on mate-
rial that is already known. They further suggested
that preferring stimuli that are somewhat related to
existing knowledge would encourage infants to
focus on completing partially built cognitive repre-
sentations. These newly completed representations
could then facilitate more efficient construction of
newer, bigger, or more elaborate cognitive con-
structs later on in learning. This formulation of the
discrepancy hypothesis thus suggests that the com-
plexity of a stimulus can be conceptualized as relat-
ing to the infant’s current knowledge state. A
“simple” stimulus would be one with little or no
new information for the infant to learn. A “com-
plex” stimulus would be one that contains almost
entirely new information, distinct from nearly
everything in the infant’s current conceptual inven-
tory. Furthermore, these theories hold that infants
should exhibit a U-shaped attentional pattern with
respect to stimulus complexity: Infants should more
readily terminate attention to events that are either
too simple (predictable) or too complex (surprising).

Our previous work (Kidd, Piantadosi, & Aslin,
2010, 2012) demonstrated that infants’ visual atten-
tion was influenced by the complexity (or informa-
tion content) of the visual stimulus. We used an
idealized learning model to quantify the complexity
of particular visual events in a sequence. We then
measured at what point in a visual sequence an
infant terminated his or her attention to the sequence.
In these studies, infants looked away at visual events
of either very low complexity (very predictable) or
very high complexity (very surprising), even control-

ling for other temporal factors known to influence
attentional selection. Additional work demonstrated
that this U-shaped pattern of preference for visual
events of intermediate complexity occurred not only
across a population of infants, but also within indi-
vidual infants (Piantadosi, Kidd, & Aslin, 2014). In
the present study, we asked whether such an active
strategy of attentional allocation extends to the audi-
tory modality.

As suggested by the aforementioned discrepancy
hypothesis, the potential utility of such a strategy
for auditory learning is substantial. In contrast to
the large quantity of work examining auditory
learning in infants (e.g., the literature on language
learning and music cognition), few previous studies
have directly examined infant auditory attention—
and none to our knowledge have employed compu-
tationally well-defined stimuli varying in complex-
ity. Although there are limits on selective auditory
attention in infants, including stimulus discrimina-
bility and working memory (see Werner, 2002), we
chose highly discriminable stimuli and a rate of
presentation that fell well within the working-mem-
ory capacity of 7- to 8-month-olds (as documented
by many previous statistical learning experiments;
see Aslin & Newport, 2012). Thus, we focused on
infants’ implicit preferences for maintaining atten-
tion to auditory stimuli that were easily accessible,
yet varied in their information value, as determined
by a quantitative model.

The general idea of a U-shaped function along a
dimension of stimulus complexity is not new. In
fact, several recent studies of infants (Gerken, Bal-
comb, & Minton, 2011; Spence, 1996) have reported
similar effects. Our approach, however, is new; it
enables us to make a specific prediction about the
U-shaped function based on a quantitative metric
of complexity. Previous studies have either defined
complexity after obtaining a
U-shaped function or have contrasted learnable ver-
sus unlearnable information rather than exploring
the space of complexity in a continuous manner.
Moreover, it is important to determine whether the
same general principles of attention allocation
apply in the auditory modality as well as in the
visual modality, especially given modality differ-
ences in the temporal and spatial statistics typically
used to process natural stimuli in each domain.

Experiment and Modeling Approach

In the present experiment with 7- and 8-month-
olds, we measured infants’ visual attention to
sequences of sounds that varied in complexity, as
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determined by an idealized learning model. We
examined the influence of complexity, while simul-
taneously controlling for other factors known to
influence infants’ attention (e.g., trial number,
repeat events). Both the experiment and modeling
approach were based on our earlier studies on
visual attention (Kidd et al., 2010, 2012; Piantadosi
et al., 2014). The behavioral experiment measured
the point, in a sequence of auditory events, when
an infant terminated his or her attention to the
sequence. The auditory stimuli were easily captured
by a simple statistical model.

Each trial consisted of 1 of 32 possible sound
sequences. The within-sequence events and the
sequences themselves were designed to vary in
terms of their information-theoretic properties. For
example, some events in a sequence were highly
predictable (e.g., sound A occurs after 20 successive
occurrences of sound A), and others were less pre-
dictable (e.g., sound B occurs after 21 successive
occurrences of sound A). Likewise, some sequences
contained many more highly predictable events
(e.g., AAAAAAAAAAAAAAAA . . .), while others
contained fewer (e.g., AAACCBAABBCABACACCC
. . .). For each trial, a script randomly selected a
new available sequence from the pool of 32. The
script also randomly selected 3 different nonsocial
sounds from a pool of 96 possible sounds. (See the
Method section for more details.)

Figure 1 illustrates the logic of the experiment
and our analysis approach. In this simplified exam-
ple trial, the infant has heard a sequence composed
of three A sounds and one B sound. The key question
is whether the infant will terminate the trial upon
hearing the next sound in the sequence. The heard
sounds (AAAB . . .) comprise the observed data,
which are combined with the prior—essentially a
smoothing term to avoid zero probabilities—to form
an updated (posterior) belief. In this example, the
updated belief leads to an expectation that the next
event has a high probability of being sound A, a
moderate probability of it being sound B, and a low
(but nonzero) probability of it being sound C. The
complexity of the next sound is quantified by an
information-theoretic metric—surprisal, or the nega-
tive log probability. This represents the amount of
“surprise” an idealized learner would have upon
hearing the next event, or, equivalently, the amount
of information processing such a learner would be
required to do (Shannon, 1948). Thus, if the next
sound is A—a sound that is highly likely according
to the model’s updated belief—the complexity of that
event would be low (i.e., the sound would be highly
predictable according to the model). The “Goldi-

locks” hypothesis thus holds that infants would be
more likely to terminate their attention at this sound.
Conversely, if the next sound is C—a sound that is
highly unlikely according to the model’s updated
belief—the complexity of that event would be high
(i.e., the sound would be highly surprising according
to the model). The Goldilocks hypothesis holds that
infants should also terminate their attention to the
sound sequence at this type of event. However, if the
next sound is B—a sound that is moderately proba-
ble according to the model’s updated belief—the
complexity of that event would fall in the intermedi-
ate Goldilocks range, thus leading infants to be less
likely to terminate their attention to the sound
sequence. If attention was not terminated at a given
sound, the sequence continued until a sound
resulted in termination of the trial (or 60 s elapsed).
Once terminated, the next trial consisted of a new set
of three sounds in a sequence whose complexity was
unique among all 32 trials presented to each infant.

The example shown in Figure 1 treats each event
as statistically independent (a nontransitional model).

Figure 1. Schematic showing an example sound sequence and
how the idealized learning model combines heard sounds with a
simple prior to form probabilistic expectations about upcoming
sound events (the “updated belief” above). The next sound then
conveys some amount of complexity according to the expecta-
tions of the updated belief. The “Goldilocks” hypothesis holds
that infants will be most likely to terminate their attention to the
sequence at sounds that are either overly simple (predictable) or
overly complex (unexpected), according to the model. Thus,
sounds to which the updated belief assigns either a very high
probability (e.g., sound A) or a very low probability (e.g., sound
C) would be expected to be more likely to generate attentional
termination (look-aways) than those to which it assigns an inter-
mediate probability (e.g., sound B).

Goldilocks Effect in Infant Auditory Attention 1797
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However, our previous work also indicated that a
model that tracked the transitional probabilities
between events (a transitional model) outperformed
the nontransitional model. In the present experiment,
therefore, we also constructed and tested a transi-
tional model of the auditory stimuli, which com-
puted complexity by capturing how likely each
sound was to follow each other sound. Note that for
either model, if an infant continued to attend to the
sound sequence, the predictions of the model would
be updated for the next sound in the sequence. Thus,
although infants may terminate their attention at
different points in different sound sequences, we
hypothesize that these attentional terminations (as
measured by look-aways) will occur predictably dur-
ing events with both very high and very low com-
plexity values, as estimated by the two models.

We note that this modeling approach and analy-
sis contrast with those employed by most infant
studies. Previous infant research typically tested for
differences in overall mean looking times. Here, we
predicted a binary outcome (whether an infant ter-
minates attention) at each individual auditory event
in a sequence. This is a more precise prediction
based on probabilities computed online.

Method

Participants

Thirty-four infants (M = 7.7 months, range = 7.1–
8.9) were tested and all were included in the analy-
sis. All infants were born full-term and had no
known health conditions, hearing loss, or visual defi-
cits according to parental report.

Stimuli

Each trial featured 1 of 32 sound sequences.
Every infant heard each of the 32 sequences exactly
once, presented in a random order across infants.
The sequences were constructed to vary in their
information-theoretic properties (e.g., entropy, sur-
prisal). Thus, some sound sequences contained
many highly predictable events (e.g., AAAAAAAAA
. . .) and others contained many less predictable
ones (e.g., BBACAACAB . . .). (See the Appendix
for details on auditory sequences.)

Each of the sound sequences presented up to three
nonsocial sounds (e.g., door closing, flute note, train
whistle). These sounds were selected randomly for
each infant and each sequence within a trial, with no
sound reuse within the same infant. Thus, each infant
heard up to 96 sounds across all 32 trials. (Infants

could have heard fewer than 3 sounds within a trial,
for example, if they terminated the sequence before
each of the 3 possible sounds had occurred.) The
sounds were chosen to be both reasonably familiar,
but also maximally memorable and distinct from one
another. Each sound sequence was presented while
infants viewed a unique scene on each of the 32
trials, generated by a Matlab script. Each scene
consisted of a single, colorful, uniquely patterned
box concealing a single, unique toy at the center of
the screen (see Figure 2 below and Video S1 in the
online Supporting Information). The box was ani-
mated to open (1 s), thus revealing its contents, then
immediately close (1 s), so that each reveal lasted 2 s.
Each reveal was accompanied by one sound from the
sound sequence. The box continued to open and
close continuously, revealing the same toy on that
particular trial and each time accompanied by the
next sound in the sound sequence—until the infant
looked away continuously for 1 s, or until the
sequence timed out at 60 s (see Video S2). The toy
was present to maintain infants’ visual fixation. The
toy did not change within a sequence, but was ran-
domized across trials and infants. Thus, there were
no differences in the visual displays across sounds in
a sequence, and look-aways could only be attributed
to the auditory portion of the stimulus presentation.

Neither the boxes nor the objects were repeated
across the 32 trials, rendering each object–box pair
independent and unique. Thus, there were 32 visual

Figure 2. Example of display used in the experiment. A novel
toy object (e.g., a little teardrop-shaped figure) in the box was
revealed by up-down animation of an occluder (e.g., a yellow-
striped box; color online). Each reveal was accompanied by the
next sound in the sequence associated with the trial. The anima-
tion and sound sequence continued until the infant looked away
continuously for 1 s. Also, in the online Supporting Information
see Video S1 for examples of animated displays and Video S2 for
an example of an infant watching and terminating a trial.

1798 Kidd, Piantadosi, and Aslin
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stimuli, 1 for each sound sequence, and each sound
sequence was associated with a different, random-
ized box–object pairing across infants. This design
ensured that differences in attentional termination
across sound sequences were not driven by differ-
ences in visual materials or particular sounds.

Procedure

Each infant was seated on his or her parent’s lap
in front of a table-mounted Tobii 1750 eye-tracker.
The infant was positioned such that his or her eyes
were approximately 23 in. from the monitor, the
recommended distance for accurate eye-tracking. At
this viewing distance, the 17-in. LCD screen sub-
tended 24 9 32 degrees of visual angle. The box at
the center of the screen was 3 9 3 in. To prevent
parental influence on the infants’ behavior, parents
wore a visor and headphones playing music
throughout the experiment. Parents were also asked
to lower their eyes and abstain from interacting
with their infants during testing.

Each of the 32 trials was preceded by an animation
designed to attract the infant’s attention to the center
of the screen—a laughing and cooing baby. Once the
infant looked at the attention-getter, an experimenter
who was observing remotely via a wide-angle video
camera pushed a button to start the trial. Every infant
heard all 32 sound-sequence trials.

For each trial, an animated scene (box opening
and closing) for that sound sequence was played.
The animated sequence of events—single instances
of one of three sounds accompanied by a box open-
ing and closing—continued until the infant looked
away continuously for 1 s, or until the sequence timed
out at 60 s. A Matlab script using real-time gaze
data from the Tobii eye-tracker automatically deter-
mined the 1-s look-away criterion for trial termina-
tion. If the trial was terminated before the infant
actually looked away, as determined after trial
termination by the experimenter monitoring the
wide-angle video-recording of the infant’s face, the
trial was labeled as a “false stop” and discarded
before the analysis. False stops occurred as a result
of the Tobii software being unable to detect the
child’s eyes continuously for 1 s, usually due to
infants inadvertently moving out of range or inad-
vertently blocking their own eyes from detection
(14.7% of trials). If the infant looked continuously
for the entire 60-s sequence, the trial was automati-
cally labeled as a “time-out” and also discarded
(4.4% of trials). Finally, trials in which the infant
looked for fewer than four events were also dis-
carded, since we judged such limited observations

are likely insufficient for establishing expectations
about the distribution of events (40.9% of trials).
These stringent inclusion criteria imply that infants
terminated many trials before they could compute a
reliable estimate of information complexity, suggest-
ing that infants have a strong bias to seek other (off-
screen) sources of information. We note that chang-
ing the minimum-attention criterion to include more
data (e.g., discarding only trials in which the infant
looked for fewer than three events instead of four)
does not affect the general qualitative or quantita-
tive pattern of results. We report data here based on
the less-than-four minimum-attention criterion to
more closely match the analyses used in the Kidd
et al. (2012) and Piantadosi et al. (2014) studies of
infant visual attention. This resulted in the final
analysis including a mean of 11.5 � 5.5 sequences
from each infant.

The dependent measure for the subsequent compu-
tational modeling was the sound at which the infant
looked away in each trial (e.g., the specific point in
each sequence at which the infant looked away from
the display for more than 1 consecutive second).

Analysis

Analysis of the behavioral data followed the
approach used in Kidd et al. (2012) and Piantadosi
et al. (2014). A Markov Dirichlet-multinomial
(MDM) model first quantified an idealized learner’s
expectations that each of the three sounds would
occur next, at each point in the sequence. This
rational model essentially combines a “smoothing”
term—or prior expectation of sound likelihood—
with counts of how often each sound has been heard
previously in the sequence in order to predict each
sound’s probability of occurring next. The model’s
estimated negative log probability for each sound
quantifies the sound’s complexity on a scale corre-
sponding to how many bits of information an ideal-
ized learner would require to remember or process
each sound (Shannon, 1948). We also applied the
MDM model to the data under an assumption of
event-order dependence. That is, instead of treating
every sound as independent, we examined whether
look-aways were predicted by the immediately pre-
ceding sound (i.e., a transitional model).

We note that the models imperfectly assume that
infants know how many sounds are possible on each
trial. This simplification keeps the analysis in line
with Kidd et al. (2012) and Piantadosi et al. (2014);
furthermore, and more importantly, it is the most
reasonable of several possible imperfect analysis
options. It is likely that infants would learn that only

Goldilocks Effect in Infant Auditory Attention 1799
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three sounds occur per sequence within the first few
trials. Other analyses that model uncertainty in the
number of sounds per trial (e.g., a Chinese restaurant
process) lead to implausible assumptions, such as
that the first sound always has probability of 1
(meaning no other sound was possible).

In the analysis that relates model-measured com-
plexity to behavior, standard linear or logistic
regressions are inappropriate because infants cannot
provide additional data on a trial once they have
terminated their attention, thus violating the inde-
pendence assumption required for these analyses.
Thus, the obtained complexity measure was then
entered as a quadratic term in a stepwise Cox
regression of the behavioral data, as employed in
Kidd et al. (2012). The Cox regression is a type of
survival analysis that measures the log linear influ-
ence of predictors on infants’ probability of termi-
nating attention, but respects the fact that infants
cannot provide additional trial data once they ter-
minate attention (Hosmer, Lemeshow, & May,
2008; Klein & Moeschberger, 2003). Importantly, the
Cox regression allows the significance of a qua-
dratic complexity term (an underlying U-shape) to
be tested while controlling for a baseline distribu-
tion of look-aways and other factors known to
influence infant attention, including generalized
boredom, trial number, sequence position, whether
the current sound was its first occurrence, the num-
ber of unheard sounds, and whether the sound was
an immediate sequential repeat.

Results

Figure 3 shows infants’ probability of terminating
attention, as a function of the negative log probabil-
ity of a sound according to the nontransitional
model. The plot collapses across infants, sequences,
and sequence positions. The diamonds represent
the raw probability of terminating attention with
complexity divided into three discrete bins. The
smooth curve represents the fit of a generalized
additive model (Hastie & Tibshirani, 1990) with
logistic linking function, which fits a continuous
relation between complexity and probability of ter-
minating attention. The figure shows a U-shaped
relation between infants’ probability of attentional
termination and the model-based estimate of
sound-event complexity. This indicates that infants
were more likely to terminate attention at sounds
in the sequences with either very low or very high
complexity (i.e., sounds that are very predictable or
very surprising, according to the model). There is a

Goldilocks value of complexity around 2 bits, corre-
sponding to infants’ preferred rate of information in
this task. However, the Cox regression analysis
revealed that this U-shaped trend was not signifi-
cant controlling for the baseline look-away distribu-
tion (b = 0.008, z = 0.325, p > .7), suggesting that
other factors contributed to the U-shape.

Figure 4 shows the outcome of the same analysis,
but now applied to successive pairs of events. This
transitional model also yields a U-shaped function.
The complexity measure—along with a number of
control covariates that could plausibly influence
infant attentional termination—was entered into the
Cox regression using a stepwise procedure that only
added variables that improved model fit. The control
variables included trial number, whether or not the
sound had occurred before in the sequence, and
whether or not the sound was the same as the last
one that had played in the sequence (Table 1). This
stepwise procedure revealed a highly significant
effect for squared complexity (b = 0.136, z = 2.91,
p < .01). This indicates that the U-shape observed in
Figure 4 is statistically significant, even after control-
ling for an overall baseline look-away distribution
and the other potentially confounding variables.

The magnitude of this effect can be understood
by exponentiating the coefficient for squared com-
plexity (e0.136 = 1.15). This number quantifies how
much more likely infants are to terminate attention
at events that are 1 SD from the experiment’s over-

Figure 3. U-shaped curve for the nontransitional model. The blue
solid curve represents the fit of a generalized additive model
(GAM; Hastie & Tibshirani, 1990) with binomial link function,
relating complexity according to the Markov Dirichlet-multinomial
model (x-axis) to infants’ probability of terminating attention (y-
axis). The dashed curves show standard errors according to the
GAM. The GAM fits include the effect of complexity (negative log
probability) and the effect of position in the sequence. Note, the
error bars and GAM errors do not take into account subject effects.
Vertical spikes along the x-axis represent data points collected at
each complexity value. The fuchsia diamonds represent the raw
probabilities of terminating attention binned along the x-axis.

1800 Kidd, Piantadosi, and Aslin
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all mean complexity. In this case, infants are 1.15
times more likely to terminate attention at such
high- or low-complexity sounds. This effect is rela-
tively small, although statistically reliable. This
analysis also revealed an effect of trial number
(b = 0.031, z = 5.76, p < .001) and first occurrence of
a sound (b = 0.523, z = 2.23, p < .05), suggesting an
overall tendency to look away at earlier sounds
during later trials and on sounds that are occurring
for the first time in the sequence.

Discussion

Our results from the transitional MDM model sug-
gest that infants seek to maintain intermediate rates
of complexity when allocating their auditory
attention to sequential sounds. This is consistent with

the hypothesis that infants employ an implicit strat-
egy of attentional allocation in the auditory modality
that is very similar to attention in the visual modal-
ity. As hypothesized in Kidd et al. (2012), the exis-
tence of this effect for auditory stimuli indicates that
the Goldilocks effect may be a general way for chil-
dren to handle James’s “blooming, buzzing confu-
sion” by providing a rational mechanism to direct
attention to the most important aspects of the world.
Of course, future work will be required to under-
stand the intricacies of this attentional strategy—in
particular, how it interacts with social factors (e.g.,
pedagogy and reward) and with overall stimulus
familiarity (e.g., mom’s face or a favorite toy).
Together with our earlier work on infant visual atten-
tion, which also used “arbitrary” stimuli rather than
highly familiar or positive-valence stimuli, the results
demonstrate that predictability plays an important
role in influencing infant attention—but it is by no
means the only relevant factor. In typical looking-
time paradigms, it is the overall duration of looking,
prior to meeting a criterion for a look-away, that
serves as the dependent measure of attention. In con-
trast, our paradigm used briefly presented sequential
stimuli because it afforded us a quantitative metric of
information complexity. It remains to be seen
whether attention to briefly presented stimuli or
static images (e.g., a scene) can be captured by a simi-
lar model. Finally, in real-world learning situations,
multiple complex factors must compete to influence
learners’ attention. Examining the complexities of
these dynamics and understanding how they interact
with the effects reported here will be a major topic of
future work.

Interestingly, the results from the nontransitional
model for auditory stimuli were not significant—in
contrast to the robust results of the nontransitional
model reported for visual stimuli in Kidd et al.
(2012). Dissimilarly, the transitional model for
auditory stimuli showed robust evidence of the
U-shaped function, even after controlling for a

Table 1
Cox Regression Coefficients (Transitional Model)

Covariate Coefficient exp (coefficient) Standard error Z statistic p value

Squared complexity 0.136 1.15 0.047 2.91 .004**
Trial number 0.031 1.03 0.005 5.76 8.61e-09***
First occurrence 0.523 1.69 0.235 2.23 .026*

Note. All transitional-model variables added by the stepwise procedure, which only added variables that improved model fit according
to the Akaike information criterion (Akaike, 1974). These results reveal significant quadratic effects of complexity. Both the complexity
and squared complexity variables were shifted and scaled to have a mean of 0 and standard deviation of 1 before they were entered into
the regression.
*p ≤ .05. **p ≤ .01. ***p ≤ .001.

Figure 4. U-shaped curve for the transitional model. The blue
solid curve represents the fit of a generalized additive model
(GAM), relating complexity as measured by the transitional Mar-
kov Dirichlet-multinomial (x-axis) to probability of terminating
attention (y-axis). Dashed curves show GAM standard errors.
The GAM fits include the effect of complexity (negative log prob-
ability) and the effect of position in the sequence. Note, the error
bars and GAM errors do not take into account subject effects.
Vertical spikes along the x-axis represent data points collected at
each complexity value. The fuchsia diamonds represent the raw
probabilities of terminating attention binned along the x-axis.
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number of other factors, including a baseline look-
away distribution. This notable difference across
models could indicate that effects of nontransitional
learning are weak for auditory stimuli. In other
words, attention to auditory stimuli could rely
more heavily on temporal order information than
does attention to visual stimuli. If so, this would
have interesting implications for potential cross-
modality differences in infants’ attentional systems
and learning. For example, although children cer-
tainly show sensitivity to frequency differences for
auditory stimuli, this apparent sensitivity could
arise as the result of learning about transitional sta-
tistics (e.g., children’s learning about the transitional
probabilities between words could yield apparent
phrase-frequency sensitivity as in Bannard & Mat-
thews, 2008). It could be that the transient nature of
auditory stimuli leads attention to be directed more
to successive differences rather than to raw frequen-
cies of occurrence, something that may be less rele-
vant in the visual modality. Alternatively, tracking
of the transitional probabilities of auditory stimuli
may either be easier or more crucial for developing
useful expectations about the auditory world. This
is arguably true in language learning, where the
meanings of words are composed not of single
events, but rather sequences of sounds, and the
meanings of utterances tend to be composed not of
single words, but of sequences of words. If this
were the case, it could be relevant to determine
whether humans are innately biased to process
auditory stimuli in this way, or whether this atten-
tional pattern might develop over time as infants
begin to acquire language. It may also be the case
that the nontransitional model regression was insig-
nificant because the effects of nontransitional com-
plexity were too highly correlated with the baseline
look-away distribution or one of the other control
factors. In this case, we might not have had enough
power to find an effect of nontransitional complex-
ity while controlling for the baseline distribution.

Our results provide quantitative evidence that
infants possess an attentional selection mechanism
that operates over the predictability of the stimulus.
However, understanding the precise nature of the
mechanism will require further work. Previous the-
ories hypothesized that infants would exhibit a
U-shaped pattern of preference over stimulus com-
plexity because of an experience-dependent selec-
tion mechanism that allocates attention with respect
to encoding or learning efficiency. However, it is
equally possible that our pattern of results could
fall out of a far more automatic, low-level selection
mechanism designed to filter out noise inherent in

the human perceptual system. In other words,
infants’ behavior may instead result from an atten-
tional mechanism designed to select the most infor-
mative, trustworthy observations—and discard
those that are uninformative (overly predictable) or
unreliable (so surprising that they are implausible).
In-progress and planned work will test these two
competing theories by longitudinally examining
patterns of selection within individuals, in other
species, and across different timescales.

Conclusions

We hypothesized that infants’ probability of ter-
minating their attention to sequential auditory sti-
muli would be greatest on sounds whose
complexity (negative log probability) was either
very low or very high, according to an idealized
learning model. We found evidence that this was
true for the transitional version of the model, but
the trend in the nontransitional version was not sig-
nificant after controlling for other factors. This may
indicate that transitional statistics are more readily
tracked by infants in the auditory modality. In gen-
eral, our results are further evidence of a principle
of infant attention with broad applicability: Infants
implicitly seek to maintain intermediate rates of
information absorption and avoid wasting cognitive
resources on overly simple or overly complex
events—in both visual and auditory modalities.
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Sequence Position

Se
qu

en
ce

 ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 
.

B A B B B A C C C A C A A B B A A A B C B B A B A A A C B B

2 
.

C C C C A C C A C C C B C C C A A A C C A C A B A A A B B B

3 
.

A A A A A A A C C C B B A B C C C B B A B B C A A B C A A B

4 
.

C B A B B A B A A C B B A A B B B A A A B A A A B B A B B B

5 
.

C A C C C C C C C B B C A C C B B B A C B C A C C A B C B C

6 
.

A A A A A A A A B B B A B C C A B B A B C B C C B B A C C A

7 
.

B A A B A A C C A B A A B B A B B B B B B A A B B B B B B A

8 
.

A A A A A C A A B C C A A A C A A A B C B A C C B B C B B B

9 
.

A C A A C A C B A C C A B A A A A A C C B A A A A A B A A B

10
  . B A A C B C C B A C B C C A A A A C A C A A C C C A C C A C

11
  . A A C B A B B C C B A A B B A B A A C B A A A B B A B A B A

12
  . A B A B C A B B C A B A B C B B B B B A A C C C B C C A C B

13
  . C C B C A B B A A B C C C C B A A B C C C B A A A B A B A B

14
  . C B B C C B B B C C B C C B B C C B C B B B C B C C A A A C

15
  . B C A B A A B A A B B A C B B A B A B A B C B A A C A A C C

16
  . B B B B B A B B A B A A B A A A A B C B B B B C C C A C C A

17
  . A B C A B C C A B C B C A B B B C A C C A B B C A C A A C B

18
  . B A B A A B A A A A C B B B B B C B A B B B C B C A B C C B

19
  . B C C A B B B B C C B C C C B B B B B B B B C B C C B B B C

20
  . A C C A C C B B A B B C B B C A A B B C A A B B C B A B B B

21
  . C A A A A C A C C C A C C A C C A C A A C A B B C B A A B C

22
  . B A B B A C A B B B B A C B B B B B A C B B B A C B A B A C

23
  . C B A C B A A C A B C B A A B A B A A A A B A A A B A A B B

24
 .

B A A A C C A C A A C C C A C C A C B A A B B C A B A A B B

25
 .

C B A C A C B B A C A C A B C A A C C B C B A C C C C B A B

26
  . C C C C C C C B B A B A B A A A B C A A C A C A B A C C B B

27
 .

B B A B C A A C B B C C B B C A A C A C A A C A A A A A C B

28
 .

B C A C C A A A B B C C A C C A B B C B B C C B A B A C C B

29
 .

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

30
 .

A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

31
 .

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

32
 .

A B A B A B A B A B A B C A B A B C C C C C C C C C C C C C

Appendix: Auditory Sequences

Sequences were randomized across infants, and each sequence continued until the infant looked away
continuously for 1 s or until the sequence timed out (at 60 s).

Supporting Information

Additional supporting information may be found in
the online version of this article at the publisher’s
website:

Video S1. Three Example Trials, Each Featuring
1 of the 32 Auditory Sequences (Selected at Ran-

do-
m) and 3 of the 96 Possible Sounds (Also Selected at
Random)

Video S2. An Example of a 7-Month-Old Infant
Subject During the Behavioral Experiment
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